SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK

Subject with Code: Microprocessors and Microcontrollers(16EC423) **Course & Branch**: B.Tech – ECE

Year & Sem: III-B.Tech & II-Sem **Regulation:** R16

UNIT-I

1)	a) Define microprocessor. Explain the brief history of evolution of μP .	[L1][CO1][6M]
	b) List the major features of 8085 microprocessor.	[L1][CO1][6M]
2)	Explain the requirement of a program counter, stack pointer and status flags in	the architecture
	of 8085 microprocessor.	[L2][CO1][12M]
3)	Illustrate neat block diagram of 8085 microprocessor and explain its internal a	rchitecture.
		[L2][CO1][12M]
4)	Draw the pin diagram of 8085 µP and explain the functionality of each pin.	[L2][CO1][12M]
5)	a) Draw and explain the flag register of 8085 microprocessor.	[L2][CO1][6M]
,	b) Describe how timing and control signals are generated in 8085 μP.	[L1][CO1][6M]
6)	Illustrate the timing diagrams of the following 8085 µP instruction and explain	
	a) MOV A, M	[L2][CO1][6M]
	b) MVIB, 25H	[L2][CO1][6M]
7)	List the various addressing modes of 8085 µP and explain each with suitable e	
		[L4][CO1][12M]
8)	Explain the following instructions of 8085 microprocessor with an example.	
	a) Data transfer instructions	[L2][CO1][6M]
	b) Logical instructions	[L2][CO1][6M]
9)	Explain the following instructions of 8085 microprocessor with an example.	. 10 10- 1
- /	a) Arithmetic instructions	[L2][CO1][5M]
	b) Machine control instructions	[L2][C01][7M]
10)	a) Define instruction.	[L1][C01][2M]
- 0)	b) Explain the instruction and data formats of 8085 μP.	[L2][C01][10M]
11)	Explain the Branch, Stack & I/O instructions of 8085 µP with an example.	[L2][C01][12M]
/	r	[][][]

UNIT-II

	b) Draw and explain the flag register of 8086 microprocessor.	[L2][CO2][6M]
	2) With the help of neat block diagram, describe the functionality of Bus	interface unit and
	Execution unit of 8086 μP.	[L2][CO2][12M]
3)	With the help of neat block diagram, explain the internal architecture of 808	66 microprocessor.
		[L2][CO2][12M]
4)	Explain the functionality of pins used in the following modes of 8086 µP.	
	a) Minimum mode.	[L2][CO2][6M]
	b) Maximum mode.	[L2][CO2][6M]
5)	List the registers present in 8086 µP and discuss its functionality.	[L1][CO2][12M]
6)	Draw the pin diagram of 8086 µP and explain its individual pin functionality.	[L2][CO2][12M]
7)	a) Mention the importance for memory segmentation.	[L5][CO2][2M]

1) a) List the salient features of 8086 microprocessor.

[L1][CO2][6M]

	b) Explain the memory segmentation of 8086 μP.	[L2][CO2][10M]
8)	a) Write a short note on memory of 8086 microprocessor.	[L1][CO2][2M]
	b) Explain the physical memory organization in an 8086 μP.	[L1][CO2][10M]
9)	a) Mention the features of Pentium processor.	[L2][CO2][6M]
	b) List the major features of the 80386 processor.	[L1][CO2][6M]
10	a) List the features of 80286 processor.	[L1][CO2][6M]
	b) Mention the differences between 8085 and 8086 microprocessors.	[L4][CO2][6M]

$\underline{UNIT - III}$

1)	With the help of neat diagrams, Describe the differences between microprocessors and		
	microcontrollers.	[L4][CO3][12M]	
2)	a) List the features of 8051 microcontroller.	[L1][CO3][8M]	
	b) Mention the applications of microcontrollers in everyday life.	[L4][CO3][4M]	
3)	ith the help of a neat block diagram, Explain the internal architecture of 8051 microcontroller		
	in detail.	[L2][CO3][12M]	
4)	a) Define register. Mention the need of registers in μP or μC .	[L2][CO3][5M]	
	Draw the flag register of 8051 µC and describe the functionality of each flag in detail		
		[L2][CO3][7M]	
5)	Mention the various registers present in 8051 µC and explain their functionalist	ty in detail	
		[L2][CO3][12M]	
6)	Draw the pin diagram of 8051 µC and describe the functionality of each pin in	detail.	
		[L2][CO3][12M]	
7)	a) Mention the importance of I/O port in a μ P or μ C.	[L4][CO3][2M]	
	b) Describe the functionality of I/O ports present in 8051 μC.	[L4][CO3][10M]	
8)	a) Explain the importance of memory in a μP or μC .	[L2][CO3][2M]	
	b) Describe how the memory is organised in 8051 μC in detail.	[L4][CO3][10M]	
9)	a) Define addressing mode.	[L1][CO3][2M]	
	b) List various addressing modes of 8051 microcontroller and explain them with an example		
	each.	[L4][CO3][10M]	
10)	a) Define counter. Mention the applications of counter	[L2][CO3][3M]	
	b) Describe the operation of timers present in $8051 \mu C$.	[L2][CO3][9M]	
11)	a) Compare serial communication and parallel communication.	[L5][CO3][3M]	
	b) Explain how the 8051 μC transfers the data using serial port.	[L2][CO3][9M]	

$\underline{UNIT-IV}$

1)	a) Write a short note on assembly language programming.	[L1][CO4][3M]
	b) Explain the moving data instructions of 8051 μC with an example.	[L2][CO4][9M]
2)	a) Write a short note on assembler.	[L1][CO4][2M]
	b) Explain various assembler directives of 8051 μC.	[L2][CO4][10M]
3)	a) Mention various logical operations performed in assembly language.	[L2][CO4][2M]
	b) Explain the logical Instructions of 8051 µC with an example.	[L2][CO4][10M]
4)	Explain the following operators of 8051 µC with an example.	[L2][CO4][12M]
	(i) Bit level (ii) Byte level	
5)	a) Mention the difference between Jump and Call operations.	[L1][CO4][2M]
	b) Explain Jump and Call instructions of 8051 μC with an example.	[L2][CO4][10M]
6)	a) Define interrupt.	[L4][CO4][2M]
	b) Write a brief description of the interrupts present in 8051 μC.	[L2][CO4][10M]

- 7) Write an assembly program of 8051 μ C to multiply two 8-bit numbers and store the result in a memory location. [L4][CO4][12M]
- 8) a) Mention various arithmetic operations performed in assembly language. [L2][CO4][2M]
 - b) Explain the arithmetic Instructions of 8051 µC with an example. [L2][CO4][10M]
- 9) a) Describe the operation of return instruction in $8051~\mu C$ with suitable example.

[L2][CO4][3M]

b) Explain how the $8051 \mu C$ performs rotate and swap operations with an example.

[L2][CO4][9M]

10) a) Define ISR, Interrupt vector.

[L1][CO4][4M]

b) Explain how the ISR is implemented with an example.

[L2][CO4][8M]

UNIT - V

- a) With a neat diagram, show the interfacing of a 4x4 matrix keypad with 8051 μC. [L4][CO5][7M]
 b) Describe key bouncing problem and de-bouncing solutions. [L6][CO5][5M]
- 2) Describe with a schematic, the scanning of the 4x4 matrix keyboard in an 8051 based system and identifying the key pressed. [L4][CO5][12M]
- 3) a) Write a short note on LCD Display. [L1][CO5][3M]
 - b) With the help of a neat diagram show the interfacing of LCD Display with 8051 μ C and explain its operation. [L4][CO5][9M]
- 4) a) List instruction command codes for programming an LCD. [L1][CO5][8M]
 - b) List the merits, demerits and applications of an LED display over an LCD. [L4] [CO5] [4M]
- 5) a) List the features of 16X2 LCD display. [L4][CO5][3M]
 - b) Draw and explain the pin Diagram of 16x2 LCD display. [L2][CO5][9M]
- 6) a) Write a short note on 7-Segemnt display. [L3][C05][3M]
 - b) With the help of a neat diagram, show the interfacing of 7- segment display with $8051 \,\mu\text{C}$ and explain its operation. [L2][CO5][9M]
- 7) a) Write a short note on Analog to Digital Converter. [L1][CO5][3M]
 - b) With the help of a neat diagram, show the interfacing of ADC 0808 with 8051 μ C and explain its operation. [L2][CO5][9M]
- 8) a) Define Interrupt and classify the interrupts. [L1][CO5][4M]
 - b) Explain multiple interrupts present in 8051 μC. [L2][CO5][8M]
- 9) a) Draw and explain briefly SCON SFR in 8051 μC. [L2][CO5][4M]
 - b) Explain the various modes of operation w.r.t serial port in 8051 µC. [L2][CO5][9M]
- 10) Design and explain any microcontroller-based system. [L4][CO5][12M]