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Abstract

Computational perception has indeed been dramatically modified and reformed from hand-
crafted feature-based techniques to the advent of deep learning. Scene text identification
and recognition have inexorably been touched by this bow effort of upheaval, ushering in
the period of deep learning. It is an important aspect of machine vision. Society has seen
significant improvements in thinking, approach, and effectiveness over time. The goal of
this study is to summarize and analyze the important developments and notable advance-
ments in scene text identification and recognition over the past decade. We have discussed
the significant handcrafted feature-based techniques which had been regarded as flagship
systems in the past. They were succeeded by deep learning-based techniques. We have dis-
cussed such approaches from their inception to the development of complex models which
have taken scene text identification to the next stage.
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1 Introduction

Text is a sequence of letters that portrays information in a document. This is one of the old-
est methods of storing information and has been used to pass on information across ages. It
has served an essential part in contemporary existence as being part of humankind’s great-
est impactful innovations. Text’s extensive but accurate contextual knowledge is critical
in disparate avenues like image search, target localization, human communication, robot
control, and corporate management, because of the extensive and specific knowledge it
contains. As a result, automated text identification and recognition, which allows users to
access and use textual data in pictures and videos, has emerged as an important area in a
variety of vision-based applications.

The goal of text detection is to locate the text within an input image, and the location is
frequently displayed by a bounding box which is often rectangular in form. The objective
of text recognition is to turn text-filled picture areas into sequences of system-comprehen-
sible characters/words. Text detection is generally the first stage in text recognition. The
task of identifying scripts of detected text can generally be done before text recognition
or using the OCR (optical character recognition) technique for multi-script images. The
script is a visual portrayal of literature that may be expressed using words or letters. This
indicates that script is a component of communication, and in multi-script images, there
are texts written in multiple scripts that may be inherited by several languages. English
and German, for instance, use the Latin script, while Hindi and Marathi use the Devana-
gari script. Along with frequently featuring disparate font styles, colors, dimensions, and
alignments, decorative/artistic or custom-designed font styles, complicated background
graphics, foreground-background texture homogeneity, etc., are used in the display board,
advertisements on hoarding, banners, electronic signboard, etc., for human attention. Dif-
ferent softwares are used for text recognition, especially for printed text documents like
FreeOCR,' SimpleOCR,?> GOCR,? Easy Screen OCR,* Tesseract,” ABBYY FineReader,®
and PyPDF2 (Tesseract Based),” etc., still, they are yet to give satisfactory results in case of
scene text image. Different scene text images in multifarious scenarios are shown in Fig. 1.

There are different categories of problems in scene text localization, identification, and
recognition which are as follows:

e Scene images can have highly complicated backgrounds. Banners, hoardings, walls,
meadows, etc., contain unique/ genuine writing styles, making them prone to cause
misunderstandings or mistakes in automated recognition.

e Component proximity, connected letters, broken letters with several linked elements,
combined characters, calligraphic texts, quasi text, range of typefaces, non-uniform/
artistic strokes, etc. are involved in the natural scene image texts.

e Several hindrances including noise, blur, distortion, poor resolution, in-homogeneous
lighting, and incomplete occlusion, can cause text detection and identification errors.

1
2
3
4
5

http://www.freeocr.net/ as visited on 01.11.2022.

https://www.simpleocr.com/ as visited on 01.11.2022.
https://jocr.sourceforge.net/ as visited on 01.11.2022.
https://easyscreenocr.com/ as visited on 01.11.2022.
https://tesseract-ocr.github.io/tessdoc/Downloads.html as visited on 01.11.2022.
® https://pdf.abbyy.com/ as visited on 01.11.2022.

7 https:/pypi.org/project/PyPDF2/ as visited on 01.11.2022.
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Fig. 1 Different scene text images: a names of some cracker boxes written creatively in different orienta-
tions; b name of the shop is in multi-script and some portion is occluded; ¢ hoarding where the name of a
municipality office is present in four disparate scripts; a funky style of writing in t-shirt where a tagline is
written with three scripts and a word is there which is in multi-script at character level; a name of a com-
pany in the circular inscription; f image of a title of a book which suffers from the reflection of light issue;
g Tollywood movie poster with an artistic title; h a Hollywood movie poster where the title is written in
Devanagari with homogeneous foreground-background

e Apart from disparate colors, and font sizes, the major challenge occurs when the text in
images is non-horizontal or orientated, curved, and in transparent backgrounds.

1.1 Application scenarios

This section discusses a few of the uses for text detection and recognition in many fields,
spanning from narrow systems to adaptive platforms.

e Recently, image processing-based apps are popular on various portable electronic
devices that are built up with intelligence to help travelers who are unfamiliar with
regional writing. Such an individual may be able to access crucial details from the intri-
cate image they filmed. Also, the text-to-voice converter can help to understand more
about the retrieved information from the cluttered scene.

e To determine a residence’s number, a residence number plate is helpful. The number
can be inscribed in a variety of typefaces, widths, and backdrop patterns. Systems
focused on text data processing might make it easier to find and localize the image’s
textbox and recognize the text.

e Business houses can find applications when the requirement of the vast quantity of
information from photos and recordings is to be extracted and interpreted automati-
cally.
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e Numerous sign panels and cautions are posted on the roadway to control congestion.
The writing on such notices and signage conveys certain important signals to drivers
and pedestrians. Such alerts and text messages are recognized and utilized to inform the
public on how to lower the likelihood of traffic fatalities.

e Often displays are employed to distribute certain valuable messages for advertising or
commercial purposes. A display includes a variety of elements, including integrated
text, background graphics, images, and details about the item or vendor, etc., to catch
human attention. Owing to different aspects, these texts are typically difficult to locate
automatically.

e For robotic navigation, to perceive the scene/environment, real-time automated scene
text analysis is a pressing need.

In Table 1 several industrial applications of scene text detection and recognition are
discussed.

The following are the main contrasts between the present survey and previous ones
(shown in Table 2) and the main contributions of this work. Figure 3 depicts the common
approaches to the analysis of scene text processing in the existing literature.

The survey is organized as follows: in Sect. 2 the methodology of selection of papers
for this survey is introduced; the discussion on datasets is described in Sect. 3; in Sect. 4
the state-of-the-art is presented; in Sect. 5 observation is discussed which is followed by
future scope (Sect. 6) and the survey is concluded in Sect. 7. For a better understanding,
the organization of this study is presented diagrammatically in Fig. 2.

2 Survey methodology

The preferred reviews and meta-analyses (PRISMA) approach was followed to pre-
pare and summarize this strategic literature survey. Figure 4 depicts the entire PRISMA
investigation.

2.1 Standards for identification

A comprehensive search is done on web resources/depositories like Google Scholar, IEEE-
Xplore, ResearchGate, springer, DBLP, and MDPI, etc. to collect relevant publications in
an organized manner. For text detection and script identification in scene images, numerous
questionnaires were utilized to improve the search performance. The following are a few
of the most common data-gathering searching phrases in text detection in scene images:
“scene text detection”, “deep learning-based scene text detection”, “classifiers used in
scene text detection”, “text extraction in natural scene images”, “deep learning-based text
extraction in the natural scene” etc. The following phrases were used in script identifica-
tion-related papers: “script identification in wild”, “script classification in scene images”,
“handcrafted-based methods in script identification”, “script identification in scene images
using deep learning”, and “script identification in natural text images”. The publications in
which the titles don’t reflect the localization and identification of scene text-related images

are considered in the superfluous category and were removed from the collection set.

@ Springer
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Table 2 Key differences of the present work with existing ones

Chen et al. (2021) 1. There is inadequate information regarding the criteria for the selection of the dis-
cussed works

2. Phase-wise development of text detection, script identification, and text recognition
is not described

3. Results are not analyzed in depth
4. They emphasized mainly recognition
Long et al. (2021) 1. Conventional machine learning-based works are less focused
2. They emphasized mainly the deep Learning based approaches
Khan et al. (2021) 1. The pre-processing techniques are not highlighted
2. They emphasized mainly the deep Learning based approaches

Lin et al. (2020) 1. Methods related to script separation in the multi-script environments to act as the
precursor for text recognition didn’t pay attention

2. Only limited works are considered
Proposed 1. This study chronologically focuses on text localization, script identification, and

text recognition techniques in two phases i.e., from 2000-2012 and 2013-2021.

2. A comprehensive categorization is presented with a broad analysis of available
handcrafted feature-based techniques

3. This study also emphasizes text analysis in natural images utilizing deep learn-
ing algorithms from initial to advanced phases

4. It also highlights the key aspects of benchmark datasets along with in-depth
exploration

5. The results of the reported works are presented and discussed in detail for bet-
ter understanding of the readers

Bold is made to show the contribution of this paper

2.2 Standards of selection

The papers were selected based on the screening of keywords and abstract. The considera-
tion criteria were set as:

Handcrafted-based techniques for text extraction,

Script separation using conventional machine learning-based techniques,
Text area prediction using deep-learning frameworks,

Deep learning-based techniques in text extraction and script identification,
Transfer learning-based approaches in scene text analysis.

Nk LD

After inspection based on these measures, the inadmissible publications were
eliminated.

2.3 Standards of admissibility

The dataset details were noted based on the different methodologies employed in text
extraction, script identification, and/or text recognition/analysis. The publications
were grouped based on the datasets used in competitions, whether handcrafted-based,
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Fig.2 The organization of this research

deep learning-based or hybrid techniques are used. The publications were ordered in
sequence by considering the year-wise track of the methods to focus on the involve-
ment of the progress. The publications were studied rigorously and the works were
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Fig.3 The block diagram of the common approaches used in scene text analysis

summarized and analyzed. Finally, a report is prepared based on the observations
achieved from the related works.

3 Benchmark datasets

Scene image-text recognition is not trivial for computers. To facilitate research in this
avenue, different scene text image datasets have been proposed. The datasets have been
composed of both low and high-resolution images as well as texts of multifarious orienta-
tions. Some datasets also consisted of images that suffered from faulty camera alignment,
perspective deformation, low contrast, brightness, etc. In Table 3 the details of a few scene
text image datasets are presented. This table contains the dataset along with their publish-
ing year, specifications, and the text positions in the images.

3.1 ICDAR

There are different versions of scene text image datasets published in the ICDAR work-
shops as competition datasets. The ICDAR 2003 dataset is a robust reading competi-
tion that has issued its first baseline for scene text identification and recognition. There
are 258 training images and 251 testing images in which the text is written in Roman. In
the ICDAR2005 dataset, there are 258 training and 251 testing for character recognition
purposes. The 2011 dataset was made of born-digital images i.e., collected from internet
sources like webpages, emails, etc. In this set, there are 420 images where 3583 words
from that were considered as training set and from 102 images, 918 words as testing.
ICDAR2013 called focused scene text dataset in the RRC category contains 848-word
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Fig.4 The process of identification, selection, and analysis of publications

images for training and 1095 for testing. The scene images were captured by the commer-
cial camera and the text is written in Roman. ICDAR 2015 RRC 1000 images for a train
set and 500 images for a test set. In addition to the tasks on born-digital images, focused
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scene images, and video text, a new challenge on incidental scene text has been considered
in this set. In ICDAR 2017 MLT dataset consists of 68,613 training and 97,619 testing
and 16,255 validation data of six scripts (Arabic, Latin, Chinese, Japanese, Korean, and
Bangla). ICDAR 2019 MLT dataset contains 10,000 training and 10,000 test images of
seven scripts. The multi-oriented scene texts are annotated using quadrangle boxes in this
set. In ICDAR 2019 Arbitrary-Shaped Text (ArT19) there are 10,166 images, with 5603
for training and 4563 for testing. These were gathered with text form variety in view, and
all text styles, including horizontal, multi-oriented, and bending, have a large number of
examples.

3.2 Street view text (SVT)

This dataset comprises 350 images from Google Street View that were labeled as anchored
boxes for word-level positioning. It contains tiny, low-resolution texts and not all of the text
instances were marked.

3.3 SVT-perspective

Among 238 images, 639 cropped texts were extracted for testing in this set. There are
potentially significant viewpoint abnormalities found in this dataset as the images were col-
lected from Google Street View technology.

3.4 llIT 5K-word

Due to the complicated surroundings, typeface, existence of distortion, and illuminated
concerns, the IIIT 5K-Word dataset is a sizable and demanding dataset for benchmark-
ing. There are 5000 photos captured and born-digital photographs in this standard dataset.
Among them, 2000 were utilized for training and 3000 for testing.

3.5 Incidental scene text

This dataset refers to the capture of images in a variety of situations employing portable
cameras in which the recording is hard to manage. Here, 4500 words are extracted from
1000 images.

3.6 SynthText

It comprises 858,750 synthetic images where the text components are of disparate fonts,
background textures, colors, sizes, and orientations. The text segments were annotated in
the line, word, and even at the character level.

@ Springer
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3.7 MSRA-TD500

This dataset covers 500 scene images of Roman and Chinese text with 300 Training and
200 images for testing. The text line and words are annotated by polygon bounding boxes.
COCO-Text: This benchmark dataset consists of 43,686 images for training and 20,000
images for testing that is used for text detection and recognition.

3.8 Chars74K

The Chars74K dataset is used to test character recognition techniques in real photos.
This collection of characters includes English and Kannada letters. There are 7705 char-
acters in this set, obtained from natural images.

3.9 ISI-UM

ISI-UM dataset was created in ISI Kolkata, India which contains 500 scene images for
Bangla text detection.

3.10 MITILST

It contains around 1000 word images, extracted from the scene images of each script
Devanagari, Malayalam, and Telugu. The images were captured from diverse scenarios,
such as neighborhood sectors of the economy, posters, route planning boards, road sign-
boards, advertising, artwork, etc.

3.11 CVSI-15

This dataset contains 10,688 cropped word video frames having ten scripts of Bangla,
Arabic Devanagari, Roman, Oriya, Gurumukhi, Tamil, Gujarati, Kannada, and Telugu.

3.12 MLe2e

In this dataset there are 1178 word images for training and 643 for testing of Chinese,
Hangul, Latin, and Kannada scripts.

3.13 RCTW-17

This is a challenging dataset on identifying and recognizing Chinese text in photo-
graphs, comprising a variety of photos, spanning street views, billboards, restaurant
menu cards, etc. There are 8000 training and 4000 test images in the dataset. Total-
Text: The dataset comprises street signboard images having a broad range of horizontal,
curved, and multi-oriented labels using polygonal bounding box coordinates at the word
level. It consists of 1555 scene images with 9330 annotated words.

@ Springer
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3.14 CTW1500

It comprises 1500 images, each with minimum single bend text. There are 3530 bend
words in the 10,751 enclosing word containers. The images were collected from the
web, and image libraries, and captured by phone camera which included lateral and
multi-oriented lettering.

3.15 DAST1500

It comprises 1538 images where the text is arbitrarily oriented. There are 1038 training and
500 testing images.

3.16 Total-text

There are 1555 photos inside the Total-Text dataset, containing 11,459 truncated text speci-
men images. There are more than three possible directions for images in Total-Text, namely
horizontal, multi-oriented, and curved.

3.17 SCUT-CTW1500

With 10,751 truncated word images, this dataset has 1500 images in the aggregate, 1000
for training, and 500 for testing. CTW-1500 annotations are polygons with 14 nodes. The
majority of the words in the sample are Chinese and English.

3.18 CUTE80

It includes 80 bent text images with a complicated background, viewpoint deformation
impact, and low-quality implications. The images were captured by the camera and col-
lected via the web.

3.19 SIW-13

In this dataset there are 16,291 text images collected from Google street view technology
having 13 scripts of Greek, Mongolian, Cambodian, Tibetan, Thai Arabic, Chinese, Kan-
nada, English, Korean, Hebrew, Japanese, and Russian.

Figure 5 shows sample scene text images from several datasets.

4 State-of-the-art

The developments in scene text processing in the past decades are broadly classified into
handcrafted and deep learning-based methods. For ease of understanding, they are further
divided into 2 chronological categories: phase 1 and phase 2. For handcrafted feature-based
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Fig.5 Sample images from some of the public datasets. One sample image from a ICDAR 2003 (Lucas
et al. 2005), b ICDAR 2005 (Lucas 2005), ¢ ICDAR 2011 (Shahab et al. 2011), d ICDAR 2013 (Karatzas
et al. 2013), e ICDAR 2015 (Karatzas et al. 2015), f ICDAR 2017 MLT (Nayef et al. 2017), g ICDAR 2019
MLT (Chng et al. 2019), h COCO-Text (Veit et al. 2016), i SVT (Mishra et al. 2012b), j IIIT 5K-word
(Mishra et al. 2012a), k MSRA-TD500 (Yao et al. 2012), 1 Chars74K (Liu et al. 2019), m ILST (Mathew
et al. 2017), n CVSI-15 (Sharma et al. 2015), 0 RCTW-17 (Shi et al. 2017b), p CTW1500 (Yuliang et al.
2017), @ CUTES80 (Risnumawan et al. 2014), r SIW-13 (Shi et al. 2016a), s SynthText (Gupta et al. 2016),
and t Total-text (Ch’ng and Chan 2017) datasets is shown

methods, phases 1 and 2 are considered from 2000-2012 and 2013-2021, while for deep
learning-based methods phases 1 and 2 are studied from 2012-2016 and 2017-2021,
respectively. These techniques are highly dependent on the different pre-processing meth-
ods, a few of which are discussed in the following section.

4.1 Pre-processing techniques

The text localization and recognition system’s pre-processing phase rests on the capac-
ity to resolve several issues like background complexity, color uniformity in foreground-
background, capturing errors like the camera-sensor heating issue, blurriness, noisiness,
etc. The pre-processing approaches can therefore improve the quality of natural images,
providing good assistance for the text segmentation to the OCR engine in terms of the per-
formance of the system. Many techniques were proposed for this purpose, few of them are
presented as follows.

Binarization On colored/gray text images comprising text and/or visuals, processing
procedures are required. Because analyzing colored images is algorithmically intensive.
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Fig.6 Progress in pre-processing of scene text image. The source image a represents a Hollywood movie
poster, and b is taken from a bottle cover. The output of Otsu’s binarization technique (Otsu 1979) are
shown in (¢, d) and the binarized images generated by an auto-encoder-based approach (Calvo-Zaragoza
and Gallego 2019) is presented in (e, f) for the images shown in (a, b), respectively

Several letter identification algorithms utilize grey or monochrome images. To isolate
an image’s content from its background, an image binarization/thresholding operation is
used generally. To reduce the number of channels and complexity of the system, Otsu’s
global binarization technique (Otsu 1979) was followed (Dhar et al. 2020; Ghoshal and
Banerjee 2020; Ghosh et al. 2018; Sengupta and Mollah 2021) in scene image process-
ing. There are other techniques in the literature (Howe 2011; Lu et al. 2010; Pratikakis
et al. 2013; Wolf and Doermann 2002) for this process. Apart from the conventional
approach, deep learning-based methods (Afzal et al. 2015; Pastor-Pellicer et al. 2015)
were also considered. In Peng et al. (2017), Calvo-Zaragoza and Gallego (2019) authors
proposed an auto-encoder-based binarization technique for document images.

In Fig. 6 the visual comparison of the Otsu’s (1979) and auto-encoder-based (Calvo-
Zaragoza and Gallego 2019) binarization techniques are shown. Figure 6b, ¢ (by Otsu)
and e, f (auto-encoder based) are the binarized form of the original scene images (a) and
(b). It is obvious from the figure that the auto-encoder-based technique gives us good
binarization performance.

Filtering The smoothing/filtering operation sometimes helps to improve the quality
of the image. For this purpose, different filters were used in the literature. Authors used
Sobel (Phan et al. 2012; Su et al. et al. 2019; Shinde and Patil 2021; Turki et al. 2016),
Canny (Epshtein et al. 2010; Phan et al. 2011; Sravani et al. 2021; Yao et al. 2012), and
Edge Preserving Smoothing Filter (EPSF) (Huang et al. 2013a; Soni et al. 2019), etc., to
find out the contours of the text objects in the image. Shivakumara et al. (2012) applied
the Sobel operation to suppress low-contrast pixels to enhance text detection perfor-
mance. Yao et al. (2012) used a canny operator for edge detection in multi-oriented
text detection in natural images. For text localization, Pan et al. (2010a) presented a
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region filtering scheme to improve the sharpening of the edges of text sections. Feng
et al. (2016) used an edge filtering-based approach to filtering out non-text pixels.

Histogram based From the histogram analysis it was seen that the textual rectan-
gles were laterally aligned (Nagaoka et al. 2021; Ren and Ramanan 2013). The edge
information (Hu et al. 2021) and visual features (Yi and Tian 2013) of alphabets/letters/
words were extracted from the histogram. Authors in Simanjuntak and Nugroho (2021)
improved the contrast of the images by using the histogram equalization technique.

Erosion-dilation Authors (Del Gobbo and Herrera 2020; Jang et al. 2002; Bhattachar-
yya et al. 2020; Sravani et al. 2021; Zharikov et al. 2020) used erosion and dilation meth-
ods to eliminate the text-like components which often mislead the system as text in the
images. According to Dhar et al. (2020) the text contains higher or lower pixel values than
the background. After dilation and erosion for both cases and performing a complementary
operation, the text areas are found.

Skeletonization By deleting the majority of the raw foreground pixels, the foreground
areas of a single-tone image can be reduced to structural remnants despite mostly preserv-
ing their length or connectedness. Authors (Azadboni et al. 2014; Agrawal and Varma
2012) used the skeletonization process for scene text detection and extraction.

Apart from conventional pre-possessing techniques for improving the quality of the
images, data augmentation techniques were also adopted in the pre-possessing phase to
synthetic data generation for increasing the volume of datasets and to improve the perfor-
mance of the system (Atienza 2021a; Ghosh et al. 2021b, 2022).

Data augmentation:

Noise The images may be contaminated with noise at the moment of picture shooting
due to poor illumination, high temperatures, unanticipated changes, etc. In augmentation,
images are being contaminated with different types of noises like salt & pepper, Gaussian,
Poisson, etc.

Rotation In various angles of rotation ¢ the scene images can be turned to make synthe-
sized images.

Shearing ITmplementing shear causes the image’s appearance to be twisted. It can be
performed both horizontally and vertically.

Wavelet transform To work with images having disparate resolutions, to get the advan-
tages of concurrent localization of frequency and time, fast processing of images, and
images using less memory, wavelet transform can be used. The wavelet decomposition can
be performed in different levels of approximate and detail coefficients.

Blur Often real images suffers from blurriness issue. In data augmentation, the blurry
effect can be imposed by allowing the low frequency to join while stopping the high fre-
quency using high-cut filters.

In Fig. 7 output images after different data augmentation techniques are presented.

4.2 Handcrafted feature-based systems

In these systems, the features are extracted from the images using different handcrafted
machine learning-based algorithms, and the class categorization is performed by using var-
ious classifiers.
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Fig.7 Image augmentation: a Original image: Tollywood movie poster (Bangla), b 45°, ¢ 90°, d 135°
rotated, e sheared image having shearing value 0.45, f Gaussian noisy image of 20% density, g single-level
Haar wavelet decomposed image, and h blurry

4.2.1 Phase 1(2000-2012)

In this phase, researchers paid attention to the necessity to extract the texts from natural
images more to ease in many applications like traffic navigation, content-based image
retrieval, information processing, etc. Different methods like visual-based where the fea-
tures extracted are by considering the topological structures of the characters; abstract-
based where the texture features are considered; and hybridized where the amalgamation
of visual and abstract-based or amalgamation of different individual abstract methods are
considered. Different techniques like MSER (Maximally stable Extremal region), SWT
(Stroke width transform), CRF (Conditional random field) based models, etc., were devel-
oped in this phase.

4.2.1.1 Text detection Visual features: A plethora of methods (Chen et al. 2011; Shiva-
kumara et al. 2010; Shi et al. 2012; Yao et al. 2012; Yi and Tian 2011) were proposed to
extract the text elements utilizing manually set criteria or dynamically learned algorithms.
In the visual characteristic-based approach, letter geometry such as edges, lines, shapes,
and corner points is considered for both text and no-text areas using color non-uniformity,
contrast change, etc.

In 2000, Garcia and Apostolidis (2000) used the Deriche edge detector and clustering
techniques to detect the text in natural images. Neumann and Matas (2010) highlighted a
technique that addressed the shortcomings of state-of-the-art methods. They observed the
extraction of the text areas using complex procedures and identification of the coordinate
points for the problem of arbitrary text orientation. They sampled and grouped the corner
points of the probable boxes and using the position-sensitive segmentation map the local-
ized area text regions are extracted. Shivakumara et al. (2010) suggested a technique for
a multi-oriented text identification system. A skeletonization-based approach was used to
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[ Texture categorization ] [ Text bodies generation ] [ fusion of text bodies ]
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Input image Input image pyramid Test score pyramid Localized text bodies Detected Text

Fig.8 The key process employed by the text detection system (Kim et al. 2003) to detect the presence of
text using SVM and adaptive mean shift technique

split potential areas into different elements after grouping in the Fourier—Laplace space.
Such elements do not usually correlate to strokes or letters, yet rather to text sections.
Chen et al. (2011) also proposed MSER-based methods to extract text in scene images. In
2011, authors in Yi and Tian (2011) detected the text regions by considering the uniform-
ity in color and local gradient-based features. They found out the connected components in
characters from the features and formed character grouping to generate text strings. They
experimented with ICDAR 2003 and their developed oriented scene text dataset. Chowd-
hury et al. (2011) proposed a text detection method using Euclidean distance measure,
comparing the text and non-text portions. With the help of stroke thickness and Hough line
transform, the header line characteristics of Bangla and Devanagari scripts are identified.
Yao et al. (2012) presented a method for detecting words in natural pictures with vari-
able orientations. This method includes a two-level categorization strategy as well as two
sets of rotation and rotation-invariant attributes that were created specifically for acquir-
ing the fundamental properties of characters in real scenarios. Gonzalez et al. (2012) used
MSER and the adaptive thresholding method to segregate the non-text component from the
image. Yin et al. (2012) proposed an automatic text localization technique using the MSER
method. Disjoint set analysis and trained Adaboost classifiers were used to identify the
text regions. Shi et al. (2012) combined pixel-level and context-level characteristics into a
graph by treating every pixel as a vertex in the network to detect text in scene images.
Abstract features: In this approach different texture-based features are considered in
scene text analysis. To differentiate between text and non-text portions or to identify the
text areas in images, authors in Chen and Yuille (2004), Kim et al. (2003), Gllavata et al.
(2004) considered texts as a particular sort of texture and used their textural features, like
regional intensities, filter outputs, wavelet coefficients, etc. Because all regions and scales
must be inspected, these approaches are generally algorithmically intensive. Furthermore,
these approaches primarily deal with lateral texts and are responsive to fluctuations in size
and orientation. Kim et al. (2003) used the actual pixel values as a feature descriptor to
train the SVM (support vector machine) classifier to categorize each pixel. An adaptive
mean shift likelihood map was used to find text regions. Their approach achieves a miss
rate of 2.4% in text detection with naive perspectives, but this method is not suitable for
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complicated natural scenes. Figure 8 provides an overview of the process involved in their
text detection.

A refined multi-scale scanning technique was presented by Lyu et al. (2005) to iden-
tify the text regions. Along with features like sharp edges and a significant contrast of
texts, they also considered the regional dynamic Boolean approach for segmenting the
text regions. Epshtein et al. (2010) discussed a robust feature extraction technique for text
detection, based on SWT by combining local and non-local scales. They showed that their
method is fifteen times faster than state-of-the-art techniques. The text region extraction
from natural images was discussed in Angadi and Kodabagi (2010) where DCT-based (dis-
crete cosine transform) high-pass filters were deployed for background removal and tex-
ture-based methods were used for segmentation and detection of text areas.

A technique to extract specific phrases in natural scenarios as suggested by Wang and
Belongie (2010). They used a rolling pane to identify single letters. Then, based on the
architectural links between letters, potential permutations were rated. In the outcome find-
ings, the most comparable permutations were chosen using the supplied collection. Despite
typical text detection algorithms, this method could only recognize words from the pro-
vided collection and cannot handle words from outside the collection. Unfortunately, for
each image, a sequence including all viable terms is rarely accessible. In comparison to
existing text identification algorithms, doing so limits the technique’s application. Kasar
and Ramakrishnan (2011) considered geometric, boundary, gradient, and stroke-based fea-
tures for text localization from the multi-oriented and multi-scripted text in natural images.
To extract the genuine bounding boxes (Wang et al. 2012) considered text line identifica-
tion by creating a response map using a sliding window over the image which is followed
by NMS (non-max suppression) method. They integrated the localities of the bounding
boxes for words as well as for characters using beam search to segment and identify the
words in a line.

Hybrid features: These are an amalgamation of different abstract-based or a mixture of
abstract-based and visual-based techniques that combine the benefits of individual method-
ologies. In 2000, Li et al. (2000) proposed a hybrid technique using wavelet and neural net-
work-based approaches to detect text in digital video frames. Using a collection of textural
characteristics [e.g. different descriptor modules of HOG (Histogram of Gradient)] (Dalal
and Triggs 2005) calculated with a set of preset patterns to determine the likelihood lay-
outs. To distinguish text parts from non-text regions, a Conditional Random Field (CRF)
model (Pan et al. 2009) was also used, which combines unary element characteristics with
bipolar spatial connections. By integrating the texture-based non-text region information
with the connected components, a hybrid technique was proposed by Pan et al. (2010b)
to identify text strings in scene images. On experimenting with the ICDAR2005 dataset
(Lucas 2005), they found an improved f-score of 0.62. A hybridization of texture-based
features extracted from wavelet histogram and HOG techniques was proposed by Darab
and Rahmati (2012) to localize text. The summary of techniques and text detection results
are depicted in Table 4.

4.2.1.2 Scriptidentification The goal of script identification is to detect the script of a par-
ticular text. In multidisciplinary platforms, it is becoming highly crucial since text recogni-
tion can choose the proper language paradigm by identifying the script and language. Script
identification may be viewed as an image categorization issue in which exclusionary forms,
like mid-level characteristics, are often developed.
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Abstract features: To differentiate between Latin and Ideographic script in images with
complicated surroundings, authors (Gllavata and Freisleben 2005) proposed an approach
that makes decisions based on a collection of characteristics retrieved straight from the
source image. Phan et al. (2011) considered video script identification based on the text
segments. They applied a canny edge detector to identify the text segments. They extracted
higher and lower extreme endpoints from the text lines to analyze the behavior of the top
and bottom lines and the retrieved endpoints which are linked. They applied PCA (Princi-
pal Component Analysis) to identify the orientation of every ten-pixel component of the
lines. A method of extracting spatial gradient features for video script identification was
proposed by Zhao et al. (2012).

Hybrid features: De Campos et al. (2009) used a hybrid method by considering the
shape and texture-based approach to recognize the characters in natural images. Shape
Contexts(SC), Geometric Blur (GB), Scale Invariant Feature Transform (SIFT) extracted
topological features and Maximum Response of filters (MRS), Patch descriptor (PCH), and
Spin were exploited as texture-based features.

4.2.1.3 Text recognition Text recognition can be used to convert a shortened text occur-
rence into the desired string pattern. It’s a crucial part of an end-to-end mechanism that
delivers reliable recognition outcomes. Hand-crafted attributes like the histogram of directed
slope descriptors, linked elements, stroke width morph, etc., are used in conventional text
recognition algorithms.

A scaled attribute acquisition technique was discussed by Coates et al. (2011). They
used bigger pools of attributes to maintain better efficiency compared to certain competing
methods, which was related to what was shown across various fields like computer intel-
ligence and computer vision. Neumann and Matas (2012) proposed an end-to-end model
to localize and recognize scene text in real time. They presented the character recognition
issue as an optimal progressive decision among a collection of extremal zones to deal with
the issues related to non-uniform background, noise, blur, low brightness contrast, etc. In
2012, Mishra et al. (2012b) generated bottom-up signals from each component occurrence
in the image. They developed a conditional random field method to holistically describe
the intensity of the detection. Here lexicon-based priors were considered in top-down sig-
nals. In their other work (Mishra et al. 2012a) of text recognition of natural scene images,
they used a higher-level probabilistic language model. They developed a large dataset of
around five thousand images and named it the IIIT 5K-word dataset. In Table 5 the script
identification and text recognition results are tabulated.

4.2.1.4 Classifiers Gllavata and Freisleben (2005) followed k-NN (k-nearest neighbor)
classification scheme on Euclidean, Bhattacharyya, and Manhattan distance metrics. Phan
et al. (2011) also used the K-NN classifier for script categorization. Zhao et al. (2012) used
Euclidean distance for classification. De Campos et al. (2009) MKL (multiple kernel learn-
ing), K-NN, and SVM classifiers were used to separate the Roman and Kannada text images.
Neumann and Matas (2012) regarded AdaBoost classifier on decision trees, SVM, and RBF
(Radial Basis Function) in their real-time text recognition work. Coates et al. (2011) used
L2-SVM for digit classification in natural images. Mishra et al. considered SVM classifier in
their work (Mishra et al. 2012a, b) for text recognition. They Mishra et al. (2012b) are also
considered SVM classifiers with an RBF kernel.
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4.2.2 Phase 2(2013-2021)

In this phase, researchers dealt with the challenges inherent in analyzing the complex scene
text images where the background and foreground color/texture differences are little. They
experimented with images where along with horizontal text lines, oriented and curved text
segments are present.

4.2.2.1 Textdetection Text detection has been a long-standing challenge in machine learn-
ing and computer vision. We categorize the features for text detection in this phase into three
ways: visual, abstract, and hybrid features.

Visual features: Gomez and Karatzas (2013) used synthetic fonts and a hypothesis-
verification framework for parallel-processing multiple text lines and using the MSER
technique to identify the text and non-text portions. Raghunandan et al. (2018) dis-
cussed text detection in scene image/video script by iterative nearest neighbor symme-
try and mutual nearest neighbor pair methods. They used the SVM method to calculate
the classification score. Authors in Xie and Tu (2015) proposed a holistically nested
edge detection (HNED) method for object detection in images. In Ghosh et al. (2020) a
semi-automated character segmentation was discussed. In this work, authors used con-
nected component analysis for character segregation and a manual segmentation was
done afterward for incorrect segmented characters.

Abstract features: In Yin et al. (2013) authors discussed a technique that is centered
on the idea of pruning. They mined the characters by the MSER technique and cluster-
ing algorithm where path weights and thresholds are determined using their self-train-
ing distance metric method. These characters are grouped to form text regions. Using
probability theory the score for the text and non-text section is calculated and based
on this final text regions were inferred. Risnumawan et al. (2014) presented a compre-
hensive approach using MMS (Mutual Magnitude Symmetry), MDS (Mutual Direction
Symmetry), and GVS (Gradient Vector Symmetry) features to find textual unit choices
in real-world photos independent of alignment, curvature, etc. This approach was prem-
ised on the reality that the textual sequences obtained by the Sobel and Canny edge
mappings inside the source pictures, behave similarly.

Yao et al. (2014a) suggested the extraction of features and classification schemes by
modifying the Random forest classifier for multi-oriented natural images and using dic-
tionary search-based techniques for error correction. Authors in Kumuda and Basavaraj
(2015) explained how to extract text regions using texture-based features. They consid-
ered statistical analysis to extract features by a first-order probability distribution and
GLCM (Gray-Level Co-occurrence Matrix ) features and discriminative analysis was
done for non-text region identification. In Shivakumara et al. (2015) Shivakumara et al.
extracted handcrafted features at the block level using gradient special and gradient
structural features to identify six video scripts. They used the skeletonization method to
reduce the pixel width and took different points relating to pixels for feature considera-
tion. Dey et al. (2017) proposed a text detection method using ring radius transform of
multi-script and multi-oriented natural scene images. They experimented with public
datasets like ICDAR 2013, SVT, and MSRA along with their developed Bangla dataset
named ISI-UM. Apart from Bangla, they experimented with various scripts like Japa-
nese, Chinese, Tamil, Korean, and Arabic. Based on the adaptive stroke filter and com-
ponent labeling techniques, Paul et al. (2019) suggested scene text localization.
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Hybrid features: A hybrid approach presented in Turki et al. (2017) constructed
by three phases to segment out the text regions. In the first phase, Otsu’s approach to
restricting the text regions via modification and a strong edge projection screen of the
complicated surroundings and MSER technique was used to recognize the potential text
pixels. A heuristic filtering-enhanced SWT method was followed to trim the predicted
letter contenders in the second phase. Then, to filter out non-text elements, the categori-
zation was done by relying on the SVM classifier. In Rashmi and Nayak (2018) another
hybrid approach was discussed using the standard filters like average, Prewitt, the edge
features, and by exploiting GLCM, texture features were extracted to detect text regions
in natural images. In Table 6 the brief description of literature works along with their
results are tabulated.

4.2.2.2 Script identification Script identification is an important part of OCR, which
has gotten a lot of interest in multi-script image processing.

Abstract features: Mid-level features (Fernando et al. 2014; Juneja et al. 2013) were
considered in script identification which is based on the concept of feature extraction
in Boureau et al. (2010). Singh et al. (2016) extracted mid-level features and demon-
strated an end-to-end script identification workflow. They experimented with their pro-
posed dataset named ILST (Mathew et al. 2017) along with the public dataset CVSI-15.
Authors (Singh et al. 2016) proposed script identification of natural scene images by a
mid-level illustration of SIFT feature descriptors on CVSI-15 and ILST datasets. They
developed ILST (Indian Language Scene Text) dataset for this work. Verma et al. (2017)
extracted texture-based features by using LBP (Local Binary Pattern), CS-LBP (Center
Symmetric Local Binary Pattern), and DLEP (Directional local extrema pattern) to
identify the multi-script scene images. They developed a dataset of railway station sign-
boards that are multi-scripted. They considered the scripts which are mainly used in
India like Devanagari, Gurumukhi, Bangla, Urdu, Roman, Odia, Urdu, and Telugu.

Fasil et al. (2017) discussed the script identification method using texture features
like Gabor, log-Gabor, and wavelet to identify the scripts of signboards in the bus. They
considered Kannada, Malayalam, and Roman scripts. In 2018 Ghosh et al. (2018) sug-
gested the character-level script identification of natural scene text by extracting texture-
based and shape-based features. In pre-processing, they used Otsu’s binarization method
which causes a few letters to disjoint. They overcame this problem by introducing an
isotropic dilation technique. They experimented with their developed dataset which
comprises Roman, Devanagari, and Bangla alphabets. In 2019 Ghosh et al. (2019a)
extracted texture and topology-based features from multi-character artistic scripts. In
another work in 2020 Ghosh et al. (2020), they used an extreme learning-based classi-
fier to identify the scripts at the character level. The reported results of these works are
presented in Table 7.

4.2.2.3 Textrecognition It is the last stage of scene text understanding where the image-
text is converted into normal text. Neumann and Matas (2013) presented a strategy that
blends the benefits of sliding-window and connected component techniques. Letters were
recognized in image patches which include certain strokes in a particular proportional
location and with the strokes by combining the image gradient field with a series of
angled bar masks. To recognize any letter geometry, a component-based tree-structured
framework (Shi et al. 2013; Yildirim et al. 2013) was used to detect and recognize the let-
ters at the same time. The suggested model was derived dynamically from the training set
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and represented letter components having disparate dimensions. This model was primar-
ily motivated by the resurgence of autonomous mid-level representative development for
recognition (Lim et al. 2013; Wang et al. 2013). Lee et al. (2014) argued that HOG and
component-based techniques do not cover all sorts of distinct features for images with
complex perspectives, and a lot of variance in typefaces. They presented a discriminative
attributes pooling technique that dynamically considers the most relevant sub-regions
of every scene character inside a multi-class categorization architecture, with each sub-
region smoothly integrating a collection of low-level characteristics in the entire image.
Yao et al. (2014b) developed strokelets, a new approach for retaining the fundamen-
tal components of letters at various granularity levels that is dynamically trained using
enclosing container tags. The strokelets approach precisely recognizes distinct letters and
facilitates a histogram characteristic that can be used to efficiently characterize individu-
als in natural scenarios. In another work Yao et al. (2014a) proposed a dictionary search
algorithm for text recognition. In Fig. 9 the schematic view of their unified framework for
text detection and recognition is presented.

For text recognition of natural scenes and video scripts, Raghunandan et al. (2018)
presented a distinct approach where they investigated convex and concave deficits to
find a candidate level. They termed this method as iterative nearest neighbor symmetry
(INNS). They also introduced a concept of Mutual Nearest Neighbor Pair (MNNP) ele-
ment detection to find the constituents of texts relying upon the external slope orienta-
tion of constituents. They considered the rotation connection of high and fused wavelets
for character recognition. They recognize text both at the word and character levels. The
text recognition results of different works are shown in Table 8.

4.2.2.4 Classifiers After features are extracted the classification is needed to categorize
images or the elements of the images into the corresponding class. Verma et al. (2017)
classified the scripts using K-NN (nearest neighbor) and SVM classifiers. Singh et al.
(2016) classified the scripts using the SVM classification method. Fasil et al. (2017)
used two types of classifiers: K-NN and SVM, to test the performance of their system. In
the K-NN classifier, categorization was accomplished by providing the labeling for the
highest frequency within the k training data closest to the unlabeled region which was
as determined by Euclidean distance. For SVM, they employed two kernel operations:
linear and Gaussian RBF. Ghosh et al. (2018) considered Random Forest, Majority Vot-
ing, Simple Logistic, and MLP (Multi-Layer Perceptron) for character-level multi-script
identification. In another work, Ghosh et al. (2019a) used SVM, RBF, Random Forest,
and MLP for artistic scene image analysis. They also used Ghosh et al. (2020) Bayes-
net, Naive Bayes, RBF, and ELM (extreme learning machine) classifiers. Boureau et al.
(2010) used linear SVM, and kernel SVM in their work whereas Singh et al. (2016),
Raghunandan et al. (2018), Yao et al. (2014b) and Lee et al. (2014) used linear SVM in
their work. Neumann and Matas (2013) used a nearest-neighbor classifier for character
renderings depending on strokes to pick the letters from an optimally produced collection
of focused areas.
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Fig.9 A diagrammatic representation of text detection and recognition framework (Yao et al. 2014a) based
on SWT and clustering

4.3 Deep learning-based techniques

Deep learning frameworks underpin almost all contemporary methodologies. Most signifi-
cantly, deep learning relieves scholars from the grueling task of continually inventing and
evaluating handcrafted functionalities, allowing a slew of new ideas to emerge.

4.3.1 Phasel(2012-2016)

Deep learning-based text detection, script identification, and recognition systems have
emerged as significant advancements in vision-based tasks. Deep structures are made up of
numerous hidden units that retrieve numerous potentially strong properties from an input
image and produce the required result usually autonomously. In the very first phase (i.e.,
2012-2016) of deep learning-based scene text analysis, it was seen that mainly the basic
deep learning frameworks were discussed in the literature since the concept of this type
of learning was new to the researchers. Different deep learning frameworks like AlexNet
(Krizhevsky et al. 2012), VGGNet (Simonyan and Zisserman 2014), GoogleNet (Szegedy
et al. 2015), ResNet (He et al. 2016a) etc., were published in this phase.

4.3.1.1 Text detection Scene text detection in natural images is a strong perceptual chal-
lenge. Using a collection of moderate procedures or manually constructed characteristics
the issue couldn’t be not entirely tackled. In 2012 Sermanet et al. (2012) devised a CNN
(Convolutional Neural Network) where multi-stage features and LP pooling method (Yang
et al. 2009) for real-world house number digit classification were considered. Experimenting
on the SVHN Dataset they got an accuracy of 94.85%.

It was observed that MSER-based algorithms are capable of identifying the majority
of textual parts within images (Neumann and Matas 2012). Nevertheless, it simultane-
ously produced a huge amount of non-textual items, resulting in a high level of confu-
sion in MSERs elements of text and non-text. Furthermore, because MESR’s approaches
are dependent on pixel-level processes, they are extremely susceptible to noise and pixel
contamination which results in erroneous interactions among letters. To solve the MSREs’
multi-letter connectivity issue, Huang et al. (2014) included a CNN-based classification
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Fig. 10 The layout of the Text-CNN framework as illustrated in He et al. (2016b)

using the sliding-window and NMS approaches. This process helped in restoring the absent
letters.

Researchers (Jaderberg et al. 2014b, 2016) developed a sliding window-based
approach to detect text in natural images. To get rid of character segmentation/seman-
tic segmentation or to find the text components locally (Epshtein et al. 2010; Jader-
berg et al. 2014b; Neumann and Matas 2010; Yao et al. 2012) which often leads to
being excluded text information, holistic approaches were used by researchers (Yao
et al. 2016) where the text as a whole was considered. Based on this approach, Yao
et al. (2016) estimated the likelihood of letters, text sections, and orientations of sur-
rounding texts in a coherent structure. Using BoW (Bag of Words), MSER, and CNN
methods, Zhang et al. (2015) distinguished text and non-text scene images. They evalu-
ated the system by using their developed scene image dataset. Risnumawan et al. (2016)
proposed a system that uses CNN to handle text detection challenges in low-resolution
photos by considering the features from the mutual interaction among different convo-
lutional levels of the network. Intriguingly, a level includes numerous aspects such as
the incorporation of non-linear processing and maximum or average pooling. He et al.
(2016b) introduced a CNN framework that concentrates on obtaining text-related areas
and characteristics of image elements. This framework was trained using multi-level and
rich supervised input, such as text region mask, letter labeling, and binary text/non-
text information. In Fig. 10 a depiction of the structure of the Text-CNN framework is
presented.

The text detection results and different techniques used in the literature are presented in
Table 9.

4.3.1.2 Scriptidentification Script identification for multilingual documents in a wild envi-
ronment is a challenge. The usage of two or more scripts is extremely prevalent in multilin-
gual and multi-script nations. As a result, in interpreting the text in these kinds of images,
the determination of the underlying script is mandatory.

Shi et al. (2015) in 2015, proposed a word or line-level script identification in scene
images. They experimented with the impact of multiple-stage pooling in their convolu-
tion framework with a trial-error process on different network versions by eliminating
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portions of the pooling tiers. Apart from using the public dataset, they prepared a dataset
for their experiment. In 2016, Shi et al. (2016a) developed a deep learning-based script
identification method. They used a pre-trained CNN model to extract local features and
by exploiting the discriminative clustering technique, the patterns of different classes were
identified from the features. These discriminative features as well as the features obtained
from the CNN network were optimized and fed into another CNN framework for classi-
fication. They experimented with the SIW-13 and CVSI-2015 public datasets. Gomez
and Karatzas (2016) considered CNN-based features and Naive-Bayes Nearest Neighbor
classifier(NBNN) fine-grained categorization properties. To consider features, as well as
spatial dependencies in the textual parts Mei et al. (2016) proposed a script identification
technique using CNN and RNN (Recurrent Neural Network). They adopted an average
pooling structure to cope with the arbitrary image dimension. Across word vectors, this
method makes use of image interpretation and spatial relationships. Whereas CNN cre-
ates detailed picture understandings and RNN successfully investigates long-term spatial
relationships, the technique integrates CNN and RNN under a single end-to-end trainable
system. They tested the proposed method using publicly available datasets: SIW-13 and
CVSI2015. The techniques for script identification and text recognition results are sum-
marized in Table 10.

4.3.1.3 Text recognition Several real-world systems, including navigation, self-driving
cars, and graphics interpretation, are made possible by recognizing text in photos. Text
recognition in natural images (Jaderberg et al. 2014a; Goodfellow et al. 2013a, b; Shi et al.
2016c; Su and Lu 2014; Wang et al. 2012) has piqued society’s attention for such objec-
tives. Wang et al. (2012) expressed the issue of end-to-end text recognition by dividing the
task into two parts: text localization and word recognition. In text localization, they identi-
fied individual words or lines of text. For the recognition of text, they designed a CPCPD
(convolution-pooling-convolution-pooling-dense) architecture. They used ICDAR 2003 and
SVT datasets to test the performance of the system. Text recognition in an unrestricted/wild
environment is a tough issue that has sparked increased scientific attention in subsequent
years. There were numerous approaches proposed to overcome this issue. Goodfellow et al.
(2013a) demonstrated an integrated deep framework to recognize multi-digit numerals from
roadside images. A framework named Maxout network (Goodfellow et al. 2013b) which
enhances the performance of the network and at the same time minimizes the dropout was
developed. Su and Lu (2014) extracted features by applying HOG features. The RNN and
CTC (connectionist temporal classification) algorithms were adapted for text recognition.
Often, viewpoint deformation causes aberrant geometries and curled/bent letter placement
in scene images. To tackle such cases, Shi et al. (2016c) designed a framework which is
based on Spatial Transformer Network (STN) and a Sequence Recognition Network (SRN)
where the STN is responsible for text irregularity correction and SRN is deployed for text
recognition.

4.3.2 Phase-ll (2017-2021)

In this phase, the researchers kept their attention more on complex scene images. Different
advanced architecture (Cheng et al. 2017; Dargan et al. 2020; Lyu et al. 2018a; Shi et al.
2018; Zhan and Lu 2019) were developed to handle the issues related to text string identifi-
cation and recognition in challenging natural images.
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The majority of current research has focused on enhancing scene text recognition effi-
ciency by incorporating additional resilient and functional graphic characteristics, like
strengthening backbone systems (Cheng et al. 2017; Lyu et al. 2018a), introducing recon-
figuration components (Shi et al. 2018; Zhan and Lu 2019) and enhancing attention pro-
cesses (Ma et al. 2021a; Huang et al. 2019; Wojna et al. 2017; Yang et al. 2017). None-
theless, it’s indeed true that a person’s comprehension of scene text is influenced not just
by sensory perceptions knowledge, but by the elevated textual linguistic contextual inter-
pretation. The advanced deep-learning models like Refinenet, YOLO-V1 (You Only Look
Once), YOLO-V2, PSPNet, Fast-FCN (Fully Convolutional Networks ), and DRN (Dilated
Residual Network) (Lin et al. 2017; Redmon and Farhadi 2017, 2018; Wang et al. 2018;
Wu et al. 2019a; Yu et al. 2017; Zhao et al. 2017) etc., are being proposed in this phase.

4.3.2.1 Textdetection The presence of text in natural scene images is important because by
knowing apriori the computational cost can be reduced by not processing non-text images.

Bai et al. (2017) discussed the block-level classification of text and non-text scene
images. They designed a multi-scale Spatial Partition Network (MSP-Net) for classifica-
tion purposes. In Sriman and Schomaker (2019) authors discussed texture feature-based
methods (color autocorrelation histogram and scale-invariant feature transform) to extract
color features to identify the text/non-text scene images. They used 1-NN and SVM for
classification.

Ghosh et al. (2019b) in 2020 proposed a six-layered CNN framework to segregate the
text/non-text in natural images. They used MSRA-TD500, ICDAR 2003, and SVT as text
scene image datasets and employed the 15-Scene Image Dataset as the non-text dataset. A
new feature descriptor using skeletonization and distance transform process was proposed
in Khan and Mollah (2019). They developed a dataset that comprises Bangla, Devanagari,
and Latin scripts. For classification, a CNN-based framework was designed.

Text detection in scene images has attracted growing interest from the field of computer-
ized imaging and offers a variety of applicability in content processing, robot control, traf-
fic navigation, OCR interpretation, information extraction, virtual reality, etc. It is indeed
an intractable concern due to a wide range of text variations in colors, fonts, directions,
languages, and dimensions, and also highly complicated and text-like backgrounds, and
several obfuscations and artifacts induced by image captures such as inconsistency light-
ing, poor contrast, blurriness, and obstruction, etc. Considering the incredible advancement
of deep learning-based techniques, many CNN/RNN premised object detection structures
were developed to fix these issues which include Faster R-CNN (Region-Based Convolu-
tional Neural Network), attention-based frameworks, FCN, etc., which significantly out-
classes conventional MSER, SWT oriented detection strategies.

Some advanced deep learning-based approaches like mask R-CNN, graph-based, atten-
tion network-based, etc., are also adopted for text detection and are described in the later
half of this section.

Zhou et al. (2017) proposed a scene text detector named EAST (Efficient and Accurate
Scene Text Detector) using VGG-16 (Simonyan and Zisserman 2014) and PVANET (Kim
et al. 2016) models. To get the correct bounding box among the closely occurring bound-
ing boxes, they developed a local non-maximum suppression technique. Using the public
datasets (Yao et al. 2012; Karatzas et al. 2015; Veit et al. 2016), they showed the frame
per second (FPS) value improved over the state-of-the-art. In 2019, a deep neural network-
based framework was developed by Ghosh et al. (2019c) using a pre-trained EAST model
to localize the text in natural images. Zhang et al. (2018) proposed a feature enhancement
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network for text box selection and by using an adaptively weighted position-sensitive
region of interest (ROI) the positions of the boundary boxes were fine-tuned. They used
a positive mining technique for dataset equalization. They experimented with ICDAR
2011 and ICDAR 2013 datasets and achieved 0.896 and 0.941 precision respectively. The
techniques of extraction of arbitrarily shaped texts in scene images were proposed by Xu
et al. (2019a). By considering the orientation of the text and using the proper mask they
created a model. Their main challenge was to localize the curved or rounded-shaped text.
The experimentation was done using the public datasets (Ch’ng and Chan 2017; Karatzas
et al. 2015; Gupta et al. 2016; Yuliang et al. 2017; Yao et al. 2012). Khalil et al. (2021)
suggested a fusion-based strategy by using Resnet-50 and EAST models to improve the
EAST model’s performance. Using the ICDAR 2017 MLT dataset the F-score increased by
0.91% in their approach. It was observed that the performance of the EAST model drops
for oriented/inclined and curved text segments in images. Ghosh et al. (2021b) proposed
an M-EAST model to overcome the issues in the EAST model and got an improved FPS
(frame/second) value which is 4.17 times higher compared to EAST.

Zhu and Du (2021) conferred a method of text detection in scene images by the con-
cept of the “mountain”. They treated the text center as a mountain top and the text bor-
der as a mountain bottom. They proposed text center-border probability (TCBP) and text
center-direction (TCD) methods to identify the top and bottom of mountains. They showed
their method can deal with oriented and curved text as well. They tested their system with
ICDAR2015, SCUT-CTW1500, RCTW-17, and MLT datasets. To identify randomly ori-
ented texts in the scene image, Wang et al. (2021a) suggested the Rotational You Only
Look Once (R-YOLO) which is a CNN-based framework. A rotating anchor box in dif-
ferent directions for enclosing text bounding boxes was used. The attributes of different
scales were retrieved to evaluate the text’s likelihood and oriented bounding boxes. Non-
maximum suppression along with rotational distance intersection techniques to minimize
replication and to have proper boxes was used. ICDAR2013, ICDAR2015, ICDAR2017,
MLT, and MSRA-TDS500 datasets were deployed to test the efficiency of this approach.

Pandey et al. (2021) proposed a text extraction and recognition method in scene images
considering deep neural network (DNN) based techniques. To consider only the text scene
images, they used a weighted naive Bayes classifier (WNBC) for text and non-text classifi-
cation. For text extraction, the DNN-based adaptive galactic swarm optimization (AGSO)
technique was used. Character recognition was performed by DNN and AGSO methods.
They also suggested an algorithm to minimize the errors generated in text/non-text clas-
sification. The whole methodology was tested using the IIITSK dataset. An end-to-end text
localization as well as clustering of scripts was proposed by Munjal et al. (2021) in 2021.
They proposed the OnDevice Text Localization with Clustering of Script (TeLCoS) tech-
nique for localization and clustering texts. The weights in the network were tuned by using
shared convolution units. With the help of a channel pruning strategy, this could be used
in low-resourced devices. ICDAR-2013, ICDAR- 2017, and MSRA-TD500 datasets were
used in their experimentation.

Liu et al. (2021) used an efficient OBD (Orderless Box Discretization) tool to iden-
tify textual content in multi-orientation scenes. OBD can overcome the inaccurate mark-
ing problem by modeling the pointwise estimation into orderless edges using discretiza-
tion techniques. They suggested a basic yet efficient matching-type learning approach to
recreating the quadrilateral bounding box to decipher correct vertex representations. To
investigate the theoretical maximum bound of their system, they performed detailed embo-
lization analyses on a few training elements: data organization, pre-processing, framework
creation, concept development, scores generated from different predictions. They applied
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Fig. 11 The structure of the Mask R-CNN driven text detector model (Huang et al. 2019) based on RPN,
PAN, Fast R-CNN, and MPN

their methods to ReCTS, ICDAR 2015 Incidental Scene Text, and The ICDAR 2017 MLT
datasets for scene text identification.

To achieve higher-level graphical features and increase text identification and recogni-
tion performance, Naiemi et al. (2021) created a CNN-based framework. In this analysis,
a pre-trained ResNet-50 network was utilized to obtain low-level graphical features. In
their proposed framework, an upgraded ReLU layer module with a specified responsive
system with a wide potential to perceive text elements had the potential to distinguish text
elements even on curved landscapes. We also introduced a character detection pipeline
architecture that is resilient to unusual (curve and vertical) text. They proposed the local
word directional pattern (LWDP) method to encode pixel values that emphasize the texture
of the characters. The testing was done by leveraging ICDAR 2013, ICDAR 2015, and
ICDAR 2019 datasets.

Gkioxari et al. (2015) proposed an R-CNN framework to predict multiple areas of local-
ization. Improving this framework to use in scene text analysis, faster R-CNN was devel-
oped by Girshick (2015). He et al. (2017) in 2017 developed the Mask R-CNN framework
by extending the concept of faster R-CNN. It introduces an object mask prediction stream
in tandem with the current bounding box recognition stream. It leveraged ResneXt as the
basic network and developed RolAlign (He et al. 2017) to replace RoIPool (Girshick 2015)
to correct the pixel alignment. Mask R-CNN focused text identification method that detects
multi-oriented and bent text in real scene images in a coherent way. In 2019 Huang et al.
(2019) suggested a framework to improve Mask R-CNN’s feature rendering abilities using
pyramid attention network (PAN) and region proposal network (RPN), faster R-CNN, and
mask predictor network (MPN). In Fig. 11 the architecture of their proposed framework is
shown. Leveraging the conventional object identification model, Mask R-CNN, Ammirato
et al. (2019) constructed a stochastic method for object identification.

The architectural information inside the data could be incorporated to characterize the
relationships between objects and provide greater potential understanding underneath
the data by expressing this as graphs. The combination of deep learning and graph-based
architectures (Gao et al. 2020; Liu et al. 2018a, 2020; Mafla et al. 2021; Ma et al. 2021a;
Shi et al. 2017a) are becoming popular for the cases of text clustering to generate semantic
textual information.
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Fig. 12 The MSGCN framework as proposed by Liu et al. (2020) in 2020

Shi et al. (2017a) estimated both object sections and linkages among multi-resolution
attribute mappings, based on the SSD (single shot detector) (Liu et al. 2016a) technique.
Bounding boxes at the individual stages were created by combining inclined rectangles
based on their connection ratings. During scene text identification, Liu et al. (2018a) in
2018 introduced a robust Markov Clustering Network (MCN). They represented object
identification as a graph-based grouping issue and constructed a fully adaptable frame-
work using a stochastic flow graph, enabling dynamic scene text detection. A graph con-
volutional network (GCN) for semi-supervised classification was proposed by Kipf and
Welling (2016) in 2016. For ordering the text sections one after another, linking with the
individual areas are necessary. To overcome the difficult text-line clustering situation, Ma
et al. (2021a) proposed a GCN-based perceptual association identification architecture to
offer a novel arbitrarily structured text spotting methodology. To handle textual cases with
large inter-character or very short inter-line spacing, the perceptual connection assertion
of the text-line combining strategy was adopted. According to them, the proposed GCN
can substantially manipulate contextual knowledge to increase link predictive performance.
They used MSRA-TD500, RCTW-17, CTW1500, DAST1500, and Total-Text datasets to
test the performance of their approach. Authors in Liu et al. (2020) considered the text sec-
tions as contextual graphs, with every vertex representing a section. Edges reflect segment-
to-segment relationships. To perform inference on sectional contextual graphs from both
visual and shape standpoints, they used the GCN-based similarities among text sections
and termed their network as multiple-similarity GCN(MSGCN). In Fig. 12 the MSGCN
architecture is shown. Gao et al. (2020) designed a multi-modal GCN for a visual question-
answering system on scene text images.

To take advantage of the complementing data given by the systems, Mafla et al. (2021)
integrated context clues to conspicuous image areas. By understanding a shared conceptual
area among conspicuous items and text detected in the image, a GCN-based framework
was proposed which was based on the work of Kipf and Welling (2016) to conduct infer-
ence. GCN and its variants (Li et al. 2019b; Chen et al. 2018; Ma et al. 2021a; Wu et al.
2019b) were used in different scene text image analysis problems. Combining GCN and
RNN, an adaptive boundary proposal framework was developed by Zhang et al. (2021a) in
2021.
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Fig. 13 A transformer-based text detection approach as presented in Raisi et al. (2021)

The traditional encoder-decoder framework is usually incapable of effectively analyz-
ing lengthy input strings. Since only the final hidden layer of the encoder is utilized as the
background vector for the decoder. Encoders cannot find the actual location of the charac-
ters since it deals with spatial data. The Attention Mechanism, on the other hand, explicitly
solves this problem by retaining and using all hidden states of the input series during the
decoding stage. It was accomplished by making a one-of-a-kind representation across each
time phase of the decoder performance and all of the encoder’s hidden states. This ensures
that the decoder has exposure to the whole input sequence with every output and can spe-
cifically take out unique components to generate the result.

To avoid false text-like structures in the image, Huang et al. (2019) used the mask
R-CNN framework for working with scene images. They proposed a pyramid atten-
tion network that worked with the R-CNN network to enhance features for curved and
multi-oriented text detection in natural images. They experimented with ICDAR-2015,
ICDAR-2017 as multi-oriented, and SCUT-CTW1500 as curved text image datasets.
Cao et al. (2020) recommended a multi-oriented text identification algorithm in con-
junction with an attention component. This approach detects text using pixel-by-pixel
prediction and is premised upon FCOS (fully convolutional one-stage object detector)
system (Tian et al. 2019). In 2021 Qin et al. (2020) designed a soft-attention mechanism
for scene text detection. The performance measures using Precision, recall, and f-score
of the state-of-the-art deep learning-based methods experimented on various datasets
for scene text detection are tabulated in Table 11.

In 2017 a research team of Google presented a new framework named Transformer
(Vaswani et al. 2017) to replace networks based on RNN. The transformer is a deep
learning framework that uses the self-attention process and component-wise weighting
scheme. Raisi et al. (2021) in 2021 proposed a Transformer-based framework (shown
in Fig. 13) which is based on an attention-based mechanism that is able to handle and
detect the multi-oriented, curved, irregular shape text bodies in natural images. The
encoder’s self-attention stack is able to distinguish distinct words in the scene image
While the decoder pays attention to distinct letters in words by employing various train-
able feature vectors/ object queries.
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4.3.2.2 Script identification Recent end-to-end scene text recognition algorithms (Fang
et al. 2018; Li et al. 2019a; Wang et al. 2021b) presumed a singular script supplied in
advance. The topic of unrestricted text interpretation for massive sets of images from
unverified senders needs to be addressed. For this, a substantial study was done on script
identification even in complicated scenarios (Cheng et al. 2019; Lu et al. 2019; Ghosh
et al. 2021b; Zdenek and Nakayama 2017).

According to Gomez et al. (2017) state-of-the-art overlooked the crucial feature of
scene text situations due to its changeable aspect ratio. They proposed a patch-based
identification scheme to maintain exclusionary elements of the picture that are distinc-
tive of its category. Rather than scaling input images to a predetermined aspect ratio as
is usual in the usage of comprehensive CNN models were developed for this scheme.

To discriminate images, stroke-part generation was considered by using ensembles
of conjoined frameworks. Gomez and Karatzas (2016) developed a new public base-
line dataset named MLe2e (Gomez et al. 2017) for evaluating all phases of end-to-end
visual comprehending text. Zdenek and Nakayama (2017) used the local convolutional
information in conjunction with the classic bag-of-visual-words method and presented
a technique for script identification in scene images. The classification was done using
SVM and MLP techniques. The performance of the system was tested on benchmark
datasets like SWI-13, MLe2e, and CVSI2015.

Tounsi et al. (2017) compared using two pre-trained CNN models AlexNet and VGG-16
which were trained from scratch, to present the scene image identification. The NBNN clas-
sifier’s fine-grained categorization properties were combined with the emotive description
of convolutional information with this technique. A novel accessible standard dataset was
also developed for the assessment of all phases of end-to-end scene text interpretation tech-
niques. Cheng et al. (2019) proposed a patch-based method where the patches in images
are fed to convolutional layers for feature extraction. Initially, features were extracted by
a convolutional layer which was followed by a patch aggregator and a squeezer module to
have local and discriminative features from the patches. A weighted fusion strategy was
adopted to fuse the prediction of the two modules. They tested the performance of their
proposed approach using SIW-13, RRC-MLT 2017, and CVSI 2015 datasets.

Lu et al. (2019) proposed a method of script identification in natural images by integrat-
ing local and global features from CNN frameworks which were developed on the founda-
tion of ResNet-20 network architectures. The Adaboost method was taken for conclusive
level fusion obtained from the CNN.

They used the image as well as the video script dataset to test the efficiency of their
system. SIW-13, CVSI-2015, MLe2e, and ICDAR-2017 were deployed in the experimenta-
tion. Attention-based patch weights technique was considered by Bhunia et al. (2019) for
script identification in natural frames. They used the CNN-LSTM (Long Short term Mem-
ory) method to extract global features. Local features were extracted from the divided parts
of the images after CNN was applied and considering the weights from the attention-based
patches. Using a dynamic fusion strategy, the local and global features were united for indi-
vidual image parts. They experimented with SIW-13, ICDAR-17, MLe2e images datasets,
and the CVSI-15 video scripts dataset. Ghosh et al. (2021a) developed a lightweight CNN
framework for video script identification. The performance of the system was tested on
the CVSI-15 dataset in noiseless and disparate noisy scenarios. Ma et al. (2021b) empha-
sized on feature extraction and classification for script identification in scene images. They
used CNN based framework for feature extraction and used a residual attention model for
considering features from characters that had background and foreground similarity. The
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classification was accomplished by another CNN framework which used a global pooling
layer. They experimented with SIW-13, RRC-MLT2017, MLe2e, and CVSI-2015 datasets.

The natural scene images consist of simple/complex backgrounds. But, in the case of
movie poster images, the complexity becomes very high. Apart from complex background
design/graffiti, there are different texts available in disparate sizes, colors, textures, and
orientations seen in movie poster images. Ghosh et al. (2022) suggested a deep learning-
based framework to identify the scripts of the movie titles. In their other work (Ghosh et al.
2021b) in 2021, they proposed a shallow convolution neural network (SCNN) for movie
title identification. In Table 12 the state-of-the-art techniques for script identification and
results are summarized.

4.3.2.3 Text recognition Deep learning-based autonomous systems demonstrated higher
efficiency (Bai et al. 2018; Cheng et al. 2017; Gao et al. 2019; Li et al. 2019a; Shi et al. 2018;
Wang et al. 2020b; Yu et al. 2020) in text recognition in natural images. Certain systems
recognize text at the letter scale (Bai et al. 2018; Kong et al. 2019), whereas the majority of
techniques recognize text at the word/sentence scale (Cheng et al. 2018; Lyu et al. 2018a).
The latter is chosen because the annotating process is simpler and less time-consuming.
Dizaji et al. (2018) developed HashGAN which is a deep unsupervised hashing technique
that effectively extracts binary representations of input images.

There are other advanced techniques based on GAN, end-to-end, ensemble-based atten-
tion, attention-based Encoder-decoder, sequence-to-sequence attention model-based, etc.,
that were also discussed in the literature and are presented in the later half of this section.

Several attention-based approaches (Cheng et al. 2017; Kim et al. 2017; Li et al. 2019a),
majorly struggled with alignment difficulty as a consequence of their orientation proce-
dure, which depends upon previous decoder outcomes. Wang et al. (2020b) addressed this
issue and proposed a decoupled attention network (DAN), that separates the alignment pro-
cess from making use of previous decoder findings. This network serves as an end-to-end
text recognizer that is efficient, adaptable, and resilient.

To effectively retain semantic features of text, RNN-based architectures (Lei et al. 2018;
Liu et al. 2018b) were investigated. Nevertheless, RNN-based approaches have had cer-
tain evident flaws, including the time-dependent interpretation and one-end sequential
temporal contextual propagation, that effectively restrict the use of meaning and comput-
ing effectiveness. To tackle these issues, Yu et al. (2020) offered an innovative end-to-end
trainable system for efficient scene text recognition called the semantic reasoning network
(SRN), which includes a global semantic reasoning module (GSRM) that captures univer-
sal semantics context via multi-way concurrent propagation. Sajid et al. (2021) presented
a text recognition system to deal with the difficulties in scene-text recognition. They pro-
posed a multi-scale and scale-wise spatially monitored network to retrieve multi-scale
features. They argued that along with feature extraction, this network can perform spatial
attention at the same time. In a more useful method, distinct feature sizes may be expressed
clearly. Also, their system experiences multi-scale integration with one another. They
adopted an approach of interscale fusion in this work. They applied their methodology on
SVT-P, CUTES0, IIIT-5k, SVT, ICDAR 2003, ICDAR 2013, and ICDAR 2015 datasets.

In 2014, Goodfellow et al. (2014) presented the generative adversarial network (GAN)
as a deep learning framework. It depicted generative designing as a contest involving two
systems: a generator system generates data in the presence of noise, while a discriminator
system separates the generator’s output from actual information. The generator can provide
quite excellent performance with some training. Xu et al. (2019b) proposed an approach
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based on a generative adversarial network to get rid of the dealings of foreground and back-
ground color and extraction of text using the connected component method. They experi-
mented on KAIST and MSRA TD 500 datasets. Kong et al. (2019) developed a generative
adversarial recognition network (GARN) for scene character recognition. The designed
architecture replaces the homogeneous variation and discriminator in GANs with a Gauss-
ian mixed distribution and multinomial predictor.

Word detection and recognition are closely associated activities. They may share fea-
ture details. Furthermore, both jobs can be used in tandem. Correct identification of text
sections aids in good recognition performance. The recognition results could well be uti-
lized to fine-tune the accuracy of text detection. In Li et al. (2017) proposed an end-to-
end method for the detection as well as recognition of text in real-world images which
are depicted in Fig. 14. They detected the region of interest using a text proposal net-
work (TPN), and TDN (Text Detection Network). Using the Text recognition module and
attention mechanism the words are recognized. But their method was not able to handle
images having oriented text regions. In 2019 by replacing the 1D attention mechanism with
2D attention and considering TPN and attention-based technique, they Li et al. (2019a)
extracted character-level features. They argued that their proposed attention technique was
tuned to take into account specific features, which improves recognition efficiency. Yang
et al. (2019) presented a symmetry-constrained rectification network (ScRN) to integrate
existent detection systems for developing a single architecture from start to finish. Wang
et al. (2021b) concentrated their work on detection text that is oriented along with curved
positions. In the end-to-end context, they estimated attention values which were used to
determine the optimized oriented bounding box. Their architecture was fully trained in a
straightforward end-to-end manner. During the training phase, both detection and recogni-
tion operations were combined and refined. The generated Rol featured vectors that consid-
ered the image size of various words into account and retrieved the appropriate content for
further detection and identification. Khalil et al. (2021) modified the EAST detector model
and along with a fully connected neural network model they designed an end-to-end model
for text detection and script identification in scene images.

In ensemble-based attention models along with attention-based recognition systems
which decode feature sequences, there is module(s) where localized contextual information
among neighboring local attribute arrays are considered for achieving higher performance.
Fang et al. (2018) showed that the performance of the system can be improved by ensem-
bling the attention and language components together. For training the system, they incor-
porated numerous losses via graphical signals and verbal constraints. Gao et al. (2019)
reasoned that the positions of the input image patch successions and the resulting charac-
ter succession are highly correlated. Nevertheless, while identifying the present character,
many modern recognition methods seldom take into account this regional detail from the
input sequencing. They described a Local Restricted Attention (LRA) method that encodes
the current vector by taking neighboring vectors from the input sequence into account.
They presented an ensemble decoder block that integrates the LRA and conventional
decoding mechanisms. This module not only improves text recognition performance signif-
icantly while taking less time to train, but it can also be readily integrated into different rec-
ognition systems. IIIT-5K, SVT, CUTE80, SVT-Perspective and ICDAR 2003,2013,2015
datasets were used in their work. Zhang et al. (2021b) presented an ensemble of three dif-
ferent attention modules for text recognition.

Using an attention-based encoder-decoder structure, scene text analysis is recently prac-
ticed since it bestows good potential outcomes on numerous standard activities (Cheng
et al. 2017; Li et al. 2019a). Present text recognition research has been driven by the
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encoder-decoder architecture. Several platforms built using such architecture have reached
cutting-edge functionality. It decodes an output label series in an auto-degenerative manner
after encoding an input image as a one-dimensional characteristic series or a two-dimen-
sional feature space, focusing on a particular portion at every sampling interval. Various
encoders, decoders, and attention mechanisms were studied in the research. But it was
found that this procedure confuses and misleads if there is a mismatch among the actual
pattern obtained from the attention’s output produced by missing or extraneous letters. To
address this issue, Bai et al. (2018) in 2018 suggested an edit-likelihood technique that
takes into account not only the probabilistic model but also the possibility of absent or
extraneous letters. In the same year, Cheng et al. (2018) set out to tackle directed text and
discovered that the existing encoder-decoder system struggles to grasp the inclined text’s
underlying properties. To retrieve text attributes in images along those orientations, they
converted the source image into four pattern sequencing of four quadrants.

A text image is a collection of various characters that can be considered as a varying
labeling sequence. The most widely used domain adaptation approaches (Pei et al. 2018;
Yang et al. 2018; Zeiler et al. 2012; Zhuo et al. 2017) could not be straightway extended to
sequence prediction since a generic adjusted approximation excludes critical fine-grained
details at the character level, which results in inadequately characterizing the content.

In 2019 Zhang et al. (2019) proposed a network, based on the attention network,
termed as Sequence-to-Sequence Domain Adaptation Network(SSDAN) for text rec-
ognition in images. They devised a gated attention similarity module to bridge the gap
between the target and obtained feature space by extracting character-level features.
The flowchart of their proposed method is presented in Fig. 15. In the same year, Sheng
et al. (2019) pointed out the sluggishness in the training pace of intrinsic recurrence
of RNN and the complexity involved in stacked convolutional networks for enduring
feature retrieval. They proposed a no-recurrence sequence-to-sequence text recognizer
that deals with the recurrences and convolutions altogether. Their network utilizes
the encoder-decoder network, in which the encoder extracts image attributes using
stacked self-attention. Using piled self-attention, the decoder recognizes texts. They
claimed using a self-attention mechanism, the training was done parallel and exposed
low complexity. They used a modality-transform module to adapt 2D input images into
1D patterns which were conglomerated with an encoder to retrieve additional exclu-
sionary information from images. They used CUTES80, IIIT5K, SVT, ICDAR 2003,
ICDAR 2013, ICDAR 2015, and SVT-P benchmark datasets to test the efficiency of
their method. In 2021 Aberdam et al. (2021) proposed a sequence-to-sequence contras-
tive learning framework for scene text recognition. In this network, each feature vec-
tor is partitioned into several occurrences, which are used to estimate the discrimina-
tive penalty. This procedure allows contrast on a sub-word scale, extracting numerous
affirmative pairings and many adverse instances in each image. They also proposed
unique enhancement algorithms, various encoder designs, and bespoke visualization
components to provide visualizations in text recognition. RIMES, IAM, CVL, Synth-
Text, IIIT5K-words, ICDAR-2003, and ICDAR-2013 datasets were deployed for accu-
racy testing. The changes in accuracy with the effect of noise, and blurriness would
make their work more interesting.

Fang et al. (2018) showed that convolutional planes can serve simultaneously as
the encoder and decoder in a scene text recognition framework. The encoder uses two-
dimensional convolution and the decoder uses an attention module to record graphic
inputs. A linguistic component was also made to simulate verbal constraints, which
can be considered an assembly for making projections. This component is constructed
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on one-dimensional convolution followed by gated linear units (GLU) (Dauphin et al.
2017). Repeated attention and language failures were gathered to train the system’s
completion. Lyu et al. (2018a) presented a separation approach for word spotting that
leverages an FCN-based technique for recognition. Liao et al. (2017) introduced an
approach named character attention FCN (CA-FCN), which represented the issue in
two dimensions. The system can efficiently distinguish abnormal and normal textual
occurrences by conducting letter categorization at every visual point.

Raisi et al. (2020) presented a framework based on fusing the Transformer and a
2D stationary encoder. In order to retain the spatial information in 2D image features
and strengthen the encoder component’s ability to capture the characteristics produced
by the encoder’s self-attention technique, they added a separate feed-forward network
tier to the encoder unit. Zhu and Zhang (2021) proposed a transfer model for end-to-
end-to-scene text recognition. Atienza (2021b) designed a Transformer named Vision
Transfer for Speedy and Effective recognition of both regular and irregular text. To
improve the accuracy Tao et al. (2021) proposed a Transformer framework named
Transformer-based text recognizer (TRIG). Compared to Atienza (2021b) their infer-
ence time to process an image is 6.6 times less.

In Table 13 different text recognition methods and corresponding results are
depicted.

4.4 Results
4.4.1 Evaluation protocol

The process of text detection was assessed by employing different protocols like ICDAR
03 (Lucas et al. 2005) (considered best match among text rectangles), DetEval (Wolf and
Jolion 2006)(paid attention towards many matches), loU (Karatzas et al. 2015), Yao (Yao
et al. 2012) (concentrated on arbitrary orientations), TedEval (Lee et al. 2019) (character-
level detection), etc. For script identification, protocols like accuracy, precision, sensitivity,
specificity, etc., Ghosh et al. (2021a) were used. The text recognition was assessed utilizing
word recognition accuracy or an end-to-end recognition (Wang et al. 2012).

Results obtained by the researchers in scene text including text detection, script iden-
tification, and recognition are presented here. We have followed the same structure here
as followed in section 4.2.1 and 4.2.2 including both handcrafted feature-based as well as
deep learning works already reported.

4.4.2 Text detection

Yao et al. (2012) trained their system with individual [CDAR 2005 dataset along with the
mixture set of their developed MSRA TD-500 and ICDAR 2005 datasets. Their system
was evaluated using MSRA TD-500, ICDAR, and Oriented Scene Text Database (OSTD)
with standard metrics like precision (P), recall (R), and f-score (F) and obtained 0.69,
0.66, 0.67 and 0.68, 0.66, 0.66 while tested on ICDAR and 0.63, 0.63, 0.60 and 0.53, 0.52,
0.50 using MSRA TD-500 and 0.77, 0.73, 0.74 on and 0.71 0.69 0.68 on OSTD dataset
using mixture and ICDAR as the training set respectively. Similarly, the other results are
detailed in Table 4 which contains results of works described in Sect. 4.2.1 the first phase
of handcrafted-based works text detection is tabulated. From this table, it can be found that
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Fig. 14 End to end text detection and recognition model (Li et al. 2017)
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Fig. 15 Sequence to sequence domain adaptation framework for text recognition (Zhang et al. 2019)

while working on Bangla and Devanagari text in natural images Chowdhury et al. (2011)
achieved P and R of 0.72, 0.74 respectively on their developed dataset.

The works described in Sect. 4.2.2 are reported in Table 8. Apart from ICDAR 2011
dataset, testing on multi-lingual dataset Yin et al. (2013) got 63.23, 79.38, 70.39, 0.22 and
68.45, 82.63, 74.58, 0.22 of R, P, F, and speed (in s) respectively while training on 2011
and multi-lingual set respectively. The reported results of text detection using handcrafted
features and machine learning classifiers of phase II are shown in Table 8.

The results of text detection work using a deep learning-based approach that is described
in Sect. 4.3.1 are depicted in Table 9. Zhang et al. (2015) reported the metrics P, R, and F
of 0.879, 0.908, 0.892 using 501 clusters, and considering the whole region in the image
the metrics values became 0.901, 0.812, and 0.854 respectively.

The resulting summary of works in the advanced deep learning phase of Sect. 4.3.2 is
presented in Table 11. Experimenting on the ICDAR2015 incident scene text dataset, Xu
et al. (2019a) achieved a precision of 0.843, recall of 0.839, and F-score of 0.841. Using
MSRA-TD500 they got 0.874 (P), 0.759 (R) and 0.813 (F). In 2018 Huang et al. (2019)
reported that using ICDAR-2017 MLT 0.800 (P), 0.698 (R), 0.743 (F), on ICDAR-2015
0.908 (P), 0.815 (R), 0.859 (F), and using SCUT-CTW 1500 dataset 0.868 (P), 0.832 (R),
0.850 (F) results were obtained.
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Table 15 Text recognition accuracies of different typical algorithms on some benchmark datasets

Method Year IC03 IC13 IC15 SVT IIITK CUTES0 SVTP
ICDAR+ PLEX (Wang et al. 2011) 2011 57 - - 56 - - -
TSM+ CREF (Shi et al. 2013) 2013 79.30 - - 73.51 - - -
Whole (Goel et al. 2013) 2013 89.69 - - 77 - - -
TSM+ PLEX (Shi et al. 2013) 2013 70.47 69.51 - - -
Label Embedding (Akata et al. 2013) 2013 - - - - 76.1 - -
PhotoOCR (Bissacco et al. 2013) 2013 - - - 90.39 - - -
Discriminative Feature Pooling (Lee et al. 2014 76 - - 80 - - -
2014)

Strokelets (Yao et al. 2014¢) 2014 80.33 - - 75.89 80 - -
Deep Features (Jaderberg et al. 2014b) 2014 915 - - 86.1 — - -
CRNN (Shi et al. 2016b)* 2015 93.1 91.1 694 81.6 829 655 70.0
RARE (Shi et al. 2016¢)* 2016 939 926 745 858 862 704 76.2
STAR-Net (Liu et al. 2016b)* 2016 944 928 76.1 869 87 71.7 71.5
GRCNN (Wang and Hu 2017)* 2017 935 909 714 837 842 68.1 73.6
Rosetta (Borisyuk et al. 2018)* 2018 934 909 712 847 843 692 73.8
Unified four stage STR (Baek et al. 2019)* 2019 949 936 77.6 875 879 740 79.2
SRN (Yu et al. 2020) 2020 - 95.5 827 915 948 878 85.1
ViTSTR- Base (Atienza 2021b) 2021 93.8 921 76.8 872 869 747 80.0
ViTSTR- Base + Aug (Atienza 2021b) 2021 947 932 785 877 884 813 81.8

 Trained on MJSynth (Jaderberg et al. 2014a), SynthText (Gupta et al. 2016)

4.4.3 Scriptidentification

In 2005 Gllavata and Freisleben (2005), achieved accuracies of 83.70%, 89.00% consider-
ing Euclidean and 85.30%, 89.00% using Manhattan, and 84.50%, 89.10% by Bhattachar-
yya distance metrics considering K values of 5, 3, and 5 respectively in the K-NN classi-
fication scheme to identify Latin and Ideographic scripts respectively. The other results of
the works as discussed in Sect. 4.2.1 are presented in Table 5.

Working on artistic scene text script identification Ghosh et al. (2019a) achieved an
accuracy of 93.90% while using ELM Ghosh et al. (2020) obtained 97.95% accuracy. The
results of other works as described in Sect. 4.2.2 are reported in Table 7. In 2012, Wang
et al. (2012) designed a CNN framework and reported the F-score as 0.64 and 0.46 using
ICDAR 2003 and SVT datasets respectively. Ma et al. (2021b) in 2021 obtained accura-
cies of 95.19%, 96.11%, 98.78%, and 97.20% using RRC-MLT2017, STW-13, CVSI-2015,
and MLe2e, respectively. The detailed results of deep learning based works in initial and
advanced phases as described in Sects. 4.3.1 and 4.3.2 are reported in Tables 10 and 12
respectively.

4.4.4 Textrecognition
Mishra et al. (2012b) achieved accuracies of 73.26%, and 81.78% using SVT, ICDAR2003.

In 2013 considering the metrics such as recall, precision, and F-score, Neumann and Matas

@ Springer
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(2013), got 45.40, 44.80, 45.20 using ICDAR 2011 dataset. The results of the research as
described in Sects. 4.2.1 and 4.2.2 are tabulated in Tables 5 and 8, respectively.

Shi et al. (2016¢) in 2016 obtained accuracies of 96.20%,95.50%,98.30%, 88.60% using
the lexicon size of 50 experimenting with IIITSK, SVT, ICDAR 2003, and ICDAR 2013,
respectively. In 2021, Sajid et al. (2021) achieved accuracies of 94.60%, 96.30%, and
83.90% using ICDAR 2003, ICDAR 2013, and ICDAR 2015, respectively. The detailed
results of deep learning-based text recognition as discussed in Sects. 4.3.1 and 4.3.2 are
reported in Tables 10 and 13, respectively.

In Table 14 the merits and challenges of handcrafted and deep learning-based methods
for text detection, script identification, and text recognition are presented. In Table 15 the
accuracies of different methods of scene text recognition experimented on the same bench-
mark datasets are presented.

5 Observations

From a scientific standpoint, we conducted a foundation-based study on scene text analysis.
In the last decade, several techniques were adopted and a lot of progress was seen in the
field of text detection and recognition. The approaches for text localization generally can
be categorized in four ways: visual/geometric/shape-based, abstract/texture-based, deep
learning-based, and hybrid-based methods. The techniques like MSER, SIFT, Gabor fil-
ter, GLCM, LBP, and HOG. DCT, NMS, and SWT, etc., were the fundamental founda-
tions of connected component analysis, sliding window-based, stroke-based, texture-based,
etc., in several state-of-the-art approaches in handcrafted-based techniques. In terms of text
detection and localization, the connected component approaches had a lot of achievements
(Chen et al. 2011; Huang et al. 2013b; Neumann and Matas 2013; Rainarli et al. 2021; Sun
et al. 2015; Yi and Tian 2011; Yin et al. 2015; Mahajan and Rani 2021). By using a quick
low-level detection this process can differentiate text and non-text components. The pixels
having comparable attributes were kept and subsequently combined collectively to form
prospective text elements. The ERs/MSERs and the SWT were two typical approaches for
this purpose also. The MSERSs detector has shown that it is capable of identifying difficult
text patterns and has a high recall.

To successfully narrow the search space for scene text analysis, the algorithms gener-
ally rely on connected component analysis, sliding window, texture, and stroke-based
approaches. The primary focus is on retrieving the related zones in the picture text zones of
interest. But this kind of approach largely depends on the identification of text-connected
areas. In reality, it can be challenging to reliably identify linked text parts in scene pho-
tos with complicated backdrops, noise contamination, poor contrast, and color fluctuation.
Creating a practical detector for the region of interest is likewise extremely challenging.
These techniques can include a variety of non-text elements. Therefore, the effectiveness of
this category of approaches depends on properly screening out the false positive rate.

The sliding window-based techniques (Wu et al. 2016) utilize a moving pane to analyze
the full scene image, retrieve the potential bounding boxes, and then apply a classification
algorithm to determine that the text is present inside the candidate panes. In this way, the
actual text regions are found recursively. Methods relying on this approach though work
well for small text areas and low-contrast images but for curved, oriented text it returns
poor performance. For noisy scene text images texture-based techniques like DWT, GWT,
LBP, CSLBP, GLCM, DLEP, etc., are effective.
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Content courtesy of Springer Nature, terms of use apply. Rights reserved.



15354 M. Ghosh et al.

The detection mechanism is rendered complex and ineffective by the various steps asso-
ciated with conventional hand-crafted feature extraction approaches, which are also prone
to erroneous sequestration. It also requires far too frequent human adjustments to categori-
zation standards while the systems relying on deep learning retain the advantages of train-
ing algorithms. These may outperform the conventional techniques in terms of precision
and effectiveness as soon as there were enough training data.

Considering the remarkable advancement of deep learning, many techniques (Nagaoka
et al. 2021; Redmon and Farhadi 2017, 2018; Wang et al. 2018; Wu et al. 2019a; Yu et al.
2017; Zhao et al. 2017) were adopted to justify their effectiveness in this area. Multi-ori-
ented, blurry, noisy, complex background text analysis in natural images has also piqued
attention, owing to its greater difficulty and practicality. In terms of scene text detection,
and recognition, the CNN-RNN architecture (Shi et al. 2016b), FCN (Liao et al. 2017),
GAN (Kong et al. 2019), ensemble-based attention network (Gao et al. 2019), attention-
based encoder-decoder (Bai et al. 2018), sequence-to-sequence attention-based network
(Zhang et al. 2019), mask-R-CNN based network (Huang et al. 2019), residual attention
network (Ma et al. 2021a), etc., were highly prevalent and these techniques offered sig-
nificant improvements over earlier methods. In Fig. 16 the phase-wise number of papers
published to the best of our knowledge for both handcrafted and deep learning-based
techniques in text detection/localization, script identification, and text recognition work is
depicted.

Handcrafted features with shallow learnable structures are the foundations of conven-
tional text identification systems in natural images. By generating sophisticated combi-
nations via obtainable various limited attributes alongside high information and machine
learning-based classifiers, their efficacy quickly reaches a plateau. Such techniques often
do not provide better performance (He et al. 2016b; Luo et al. 2019) compared to the deep
learning methods. The universality of these low-level features on highly demanding text
analysis in the wild is necessarily limited. The visual-based methods suffer from transla-
tion, scaling, or letter modification issues. In abstract techniques, the number of features or
feature selection is the constraint in the performance analysis of the system.

Deep neural networks were applied in the bulk of current research items (Ganin and
Lempitsky 2015; Long et al. 2015; Pei et al. 2018; Tzeng et al. 2017) to map the input and
destination into a common region while the fields are synchronized. They usually try to
minimize some metric of category displacement to improve the universal interpretation.
Since the domain shift occurs regionally in the symbols instead of globally in the whole
image as discussed in their techniques, an adaptation of such approaches conveniently to
the consecutive text images where a large number of characters are involved is very dif-
ficult. To properly reallocate variable-length sequence information, character-level features
are needed which were obtained by emphasizing sequence-to-sequence domain-adapted
attention networks. Using the contrastive learning technique, the feature vectors were split
into a series of independent pieces for self-supervised learning of sequence-to-sequence
spatial identification. For low training volume data, this attention-based contrastive learn-
ing technique gives good validation accuracy.

The typical text regions in natural scene images are considered to be rectangular to help
in text localization. But, instead of constructing a text mask of a predefined pattern, Mask
R-CNN-driven approaches try to distinguish the text zone from the surrounding/back-
ground area. This approach estimates text boundary frames initially, then conducts lexical
separation between them. In basic settings, this method is typically appropriate. Although
it is somewhat unstable in the case of the predicted enclosing box which lacks encom-
passing the entire textual zone. Also, in the case of noisy data, this approach sometimes

@ Springer
Content courtesy of Springer Nature, terms of use apply. Rights reserved.



15355

Scene text understanding: recapitulating the past decade

SIXQIUOD
PlIom-Tear ut 31 Jo A)nn st
asearour 0) paaoidwt aq 03 Kouaroyyq

uon
-09J0p JUSIUOD [eId)E] A[UO SISPISU0D)

91005~ UT JudwoAoIduwy

uoneOYUIPI
3y} 03 UOTOIIIP JX9) J0y pardope
9q UEBD POYIAW PU-0)-PUd UY

1X9) paAIND ur dourwIofrad Yeop
1%9)
POAIND J0J PApaau ST Judtaroxduwy

SIomawely sIsK[eue Jx9) pajerdojur
Jo yoeoidde s[qeidepe ue oyew oJ,

panoxdwr oq 0) SJ

Surssoooxd molg

papaau st JuswaAoxdwr dduew
-10310d ‘sagewn Ajjenb-mof 104

uon
-09)9p 13} PAIUALIO Juaq 10J 9d0og
sour|
1x9) SUO[ PUB JX9) PIAIND UT JUIW
-ono1duwr eourwIoyIad 10y WOOY
aImngy oy
ur o1doy uone3nsoaur SumsLyur
ue 9q p[nod agen3ue| as1oa1d
) Sunurodurd 9dros o[Surs
QTeys S)O9[RIP SNOIAWINU USYA\
PpayeaId
9q ued $9X0q SUIPUNOq JUAIJIP
SJUQWSS 1Xa) PoIRIOOSSE A[9SO[D 10
sagewn
yduos-nnuw 10§ uono9lop 1duog

soSewn
1dLIos-nnu 10 papuLIXd 9q Ue)

1X9) [BOT}IAA I0J QOURW
-10312d ut Juswaroxdwr 1oy odoog

191589 $59001d uonNIUS091 1X3)
Surpaaoons Ay} 9JeIouas prnood ey
sonqrnye Je[nuess 1oysry yIm
Sururen 193je sojoyd mel woiy
su31sop I9)39] o ojeredas A[eoyro
-ads 03 9[qe 9q p[nom poyjew A,

1XQ] [EUOTUSAUOD
pue 91x9) \Gmb_em x9) une-uou
Aq)3uaT 10 poO3 ST QOUBWLIONS]

%91 3ur
-Je301 pue Aun AJIiuopr 0} [enualoq

UOT}02)0p 1X3) PAUATIO-LIeNIqIY

spunoi3yoeq pajesrdwod
PUB ‘UONN[OSAI-MO] ‘PALI0ISIP
10§ Ajpeuonouny pasoxduy
pawrograd ST uonERZI[BIO]
Ay} uonedynuap! jurod IouIod pue
uoneredos aanisuds-uonisod Sursn

JX9) POJUSLIO I0J [[oM SULIOJI]
Surpuaq J0 ‘pyuUALIO-H[NW
‘JefJ I Jey) SOOUILINIJO0 JX3) pue
‘SULIOJ JB[NSALIT JO SIX) JO9J9p UB)
saxoq 3urpunoq
Surmnooo A[asoro oy Suowre xoq
Surpunoq 1991109 3Y) JO UOTIIIPAI]

$1019] SuLI0qUSToU U2IM)Aq UOT

-BIOOSSE ) PUB ‘SI9)JQ] ‘SUOIIBIO]

1%9) Jo pooyray1 Ay Sunorpaid

0S[& 9[IYM }X3) JUQ PUB PIJUILIO
-n[NW 9Z1uS0031 0) [ENUAI0J

INYSD ‘NS

SIAN ‘Surjood
0¥ pawyStom ‘(NdIO) Yrompou
Tesodoid uor3ar [eare[rpeng)

oMU SO0

INLST-NND paseq-uonuany
Kanisuas

reuonisod yim Surjood 10y

SN ‘NO4

NOA

LSvd

NOA

(0200 T8 19 nK

(80Z07) 'Te 10 Suep

(0207) Te 10 08D

(6102) 'Te 3 erunyg

(a8107) Te 0 nk

(8100) 1819 9H

(8102) 'Te 32 Suo|

(L100) T8 12 noyz

(9100) 'Te 10 0BK

STy

odoos armng

uonnqLIuod AYII0MION

K3o1opoyioN

ImyeIory

SPOYJOW J1e-9y}-JO-0Je)S QWIOS JO SUONINQLIUOD AYMOMIION 9| d|qe]

pringer

As

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



M. Ghosh et al.

15356

wojjed paoInosal

-mo[ & ur pakodop 9q ued Wa)sAs
9y ‘ASorens Surunid [ouueyd Ag

(Q1207) BZUSNY

s paredwod ssf sowm 9°g SI
oSewr ue sso001d 0) oW SOUSISJU]

uonodoid ur spuewdp Jurssaooxd
pue ‘paads ‘Aoeinooe soznriorid
[OTYM 2IN)ONIS WAISAS 938)S-0UQ

suonejuowarduw [eo
-noeid Joj doueurioyred Sursseoord
PUE SSQUAATIIJJ JO SUOTIBIIPISUO))

Ppapaau st JuduraAodur

Koranooe sagew A1njq pue Aun 104
punoi3yoeq
pue punoidaIoy Jo 2Inxa) Y}

ur SONLIB[IWIS 9I0W JOPISUOD O,

[9pOU Paseq-NNY 9y
01 paredurod 1oySIY ST W) OUIU]

PeaYIoA0
uoneoynuapt JdLIdS JnoYIM uon
-1ug09a1 1x%9) 1dr1os-nnur 10§ pado
-[9A9P 2q UBD SWIASAS PuI-0}-pur]
uon
-1uS0991 1%} 1d1Ids-nnu pue 1x9)
QATSIND ISPISUOD 0) PIPUI)XA 3q UBD)
1x9) AAIND
PUE [BOT)IOA ‘SIONQ[ UT 9INJONIS
JL1WO0F JB[TWIS UI Juaw
-onoxdur eouewioyrad 10y 9doog

spoyjow SuIsny paoueApe
AyS1y ‘romau Surdoreaadp 103 2doog
sagewn
Ks1ou Ajesuap 10y soyoyed aFewr
Suropisuod Aq paaoxdwir oq ued
w)sAs ay) Jo aourwwioyrad ay,

saLIsnpur wiy
JI9Y)JO I0J JASEIep ) JO UOISUAXF

suoneordde prrom
-Tea1 103 uonezrundo 103 2doog

s3d1os 9)e3

-0139s 0} uaping [euonerado oy}

QZIWIUIW 0) AW} dWES Y} Je Jul
-dnoi3 1d11os pue uonezIfeso[ X,

Kyrxardwoo aonpax
pue Aoenode ur juswasoiduy

1%} Je[n3amir pue Jen3a1 yjoq 1oy
uonIus0031 ANOIYPH pue Apoadg

sjoxid punoi3yoeq pue punoi3aioy

USI3unsIp 0y YI0MIWel) Iy}

PA[qeUS pue ssad01d uonuale syl

)M UOTIOBIXD 2INJed) [o[ered
J10J WISTUBYOSW UOTUSIIE [eNSIA

S9OTAIP

paurensuod-201nosai Koydop 03
padoraaap sem NND WStomiysr

(L107) 'Te 19 noyz

0) paredwod 4 ss9[ pue ‘sydLios
PaYNUapI ‘SN AIAOW PAJoRNX

uonIusooar

1X9) PAIULLIO A[LIEIIqIE JOf

seInqrme [eneds oy surejar A[ren

-ue)sqns 1 ‘sanbruyo9) Ior[IRS 0)

paredwo)) "uonmu30921 1Xa) AUAIS
0) [opow paseq-1owIojsuer) parddy

SOOT2L

OIIL

JOULIOJSUEBI], UOTSTA

SI0M
-QUWIEBIJ UOTIUSNIE PRIUAD JOPOOUF

NND JSemysIy

NNOS ‘LSVH-IN

Jouriojsuely,

(1202) T8 32 relunpy

(1202) Te 10 oL,

(q1207) eZUSDY

(1202) 18 12 pileg

(e1202) e 10 ysoyn

(Q1207) e 9 ysoyn

(0207) Te 10 ISRy

SYIeWY

adoos amng

uonnqLIuod AYIIOMIION

K3ojopoyioN

QInjeIdr|

(penunuod) 91 ajqey

pringer ) ) )
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Qs



15357

Scene text understanding: recapitulating the past decade

1X9) PAAIND pue Aur 1oy
POP23U ST JUSUIAAOIdWIT OUBWIOFIO]

Qouewojrod
uono3)p SUISLAIOUI J0J SPOYIAW
uonuaye pasueape 1depe 03 adoog

uonIugooar
PUE UOT19)9P 1X3) PAIUE[S ‘PAIUD
-110 JOPISUOJ 0) podO[oAdp WISAS

OTOAY

(a1207) Te 1o Suepm

SYIeWY

adoos amng

uonnqIIuod AY1I0MIION

K3ojopoyioN

QInjeINI|

(ponunuod) 9| ajqeL

pringer

As

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



15358 M. Ghosh et al.

200
N Detection N Script identification M Recognition

150

0 I- |I ‘I |I

Phase-l (Year 2000-2012) Phase-Il (Year 2013-2021) Phase-I (Year 2012-2016) Phase-II (Year 2017-2021)

=
o
]

Nmuber of publications

[V
o

Handcrafted Deep-learning

Fig. 16 Phase-wise publications based on handcrafted and deep learning techniques for scene text detec-
tion, script identification, and text recognition, respectively

generates improper text boxes. The PAN architecture considered these shortcomings of the
Mask R-CNN and developed lexical separation over the word and surrounding regions by
using the pyramid-level concept for the pixels in the text areas.

Region proposal structure-driven feature extraction made significant amounts of atten-
tion to developing complex detection mechanisms to get narrower bounding boxes around
the text to reduce the complexity of word recognition. But, there is also the lag in verti-
cally oriented text identification and small letter words issues in the recognition. Encode-
decoder-based frameworks were developed to solve these issues. But, many studies
addressed the shortcomings of the encoder-decoder platform. It was also found that there is
unevenness among the ground truth symbols and the attention’s output combinations (Bai
et al. 2018). The probabilistic spread, which was generated by absent or redundant char-
acters, will befuddle and misguide the training phase when contemplating the scene text
recognition issue under the same attention-based encoder-decoder structure.

Observations indicate that the introduction of Transformer-based models has resulted in
enhanced text detection performance in specific cases.

There are several key reasons for the performance differences between the methods
based on the Transformer structure and CNN structure in the text detection tasks. Firstly,
Transformers use self-attention mechanisms, which allow them to weigh the importance of
different parts of the input. This is particularly useful for identifying the text regions. Sec-
ondly, Transformers can handle longer sequences of data, which is important for text detec-
tion tasks that involve processing large amounts of text. Thirdly, Transformers can incorpo-
rate the contextual information from the surrounding words to improve the accuracy of text
detection. In contrast, CNNs rely on convolutional filters for identifying the text regions,
and they may not capture the full context of the text. However, CNNs are useful for simpler
text detection tasks, because they are more computationally efficient for smaller inputs. In
Table 16 the noteworthy contributions of the state-of-the-art methods over the develop-
ing phases of scene text detection and recognition as well as the synthesis of remarkable
knowledge based on the targeted literature are presented.
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Presented here is an analysis of some significant works to provide insight into the
trends of methods and their performances. He et al. (2018) obtained an F-score of 75.50,
which is 12.29% less than the EAST model (Zhou et al. 2017) on the CASIA-10K data-
set. They considered pixel-wise categorization, regression of text non-text pixels, edge
coordinates, data augmentation, word, line-level annotation, etc. which according to them
yielded higher scores. The F-score of PixelLink (Deng et al. 2018) is 5.5% better than
EAST+PVA2x on ICDAR 2015 MLT. Using the COCO-text dataset they obtained a 2.9%
higher F-score than EAST. Though PixelLink obtained a higher F-score than EAST using
the same base model of VGG16, EAST provides better FPS on ICDAR 2015 MLT. Using
the NVIDIA RTX 2070 of 8GB GPU, Raisi et al. (2020) got an inference time of 10 FPS
and F-score of 83.65 which is higher than the method (Ma et al. 2018) for both F-score and
speed. Instead of Using 1080Ti GPU which is 17% higher speed than NVIDIA RTX 2070,
Wang et al. (2019) got FPS 1.6 and F-score 85.69 using the same dataset ICDAR 2015
MLT). The hardware configurations of the state-of-the-art methods are described in the fol-
lowing paragraph.

5.1 Hardware configuration

The robustness (i.e., higher or lower scoring, FPS, etc.) of reported methods depends heav-
ily upon input image resolution, system configuration, etc. Here, we discuss the hardware
configuration along with the outcome of state-of-the-art techniques. Yao et al. (2016) in
2016 performed their experimentation for 480p resolution images using a K40m graph-
ics card. The prediction time is 420ms and FPS is 1.61. The EAST (Zhou et al. 2017)
method in 2017, was performed on a system with a lone NVIDIA Titan X Maxwell graph-
ics board and an Intel E5-2670 v3 processor running at 2.30 GHz. This technique’s top
set has a frame rate of 16.8 FPS (considering PVANET), while its weakest configuration
(considering VGG) has a frame rate of 6.52 FPS using 720p resolution. The fastest variant
using PVANET2x manages only 13.2 frames per second. Ghosh et al. (2021b), proposed
M-EAST which is based on the EAST technique. They experimented on a machine having
a configuration of NVIDIA Quadro RTX 5000, 16 GB GPU, and primary memory (RAM)
of 32GB. They reported their average FPS is 18.10 which is 4.07 times higher than EAST.
Dasgupta et al. (2020) used two NVIDIAP6GPU’s to train their model. The TelCos tech-
nique (Munjal et al. 2021) was run on TensorFlow 2.3 platform for 768p resolution images
and the system was trained using Nvidia GeForce GTX 1080 Ti having 16GB memory. The
CRAFTs (Huang et al. 2021) was trained on the Nvidia P40 GPU and Intel(R) Xeon(R)
CPU. Considering 960, 1280, 1600, and 2560p resolutions the FPSs were 9.9, 8.3, 6.8,
and 5.4, respectively. The FCOS-BiFPNRTX and FCOS-FPN (Cao et al. 2021) techniques
were trained on TITAN GPU machine using PyTorch software. On ICDAR17 MLT the
F-score of M-EAST is 84.50 while for the same dataset EAST, TelCos, FCOS-BiFPN,
and FCOS-FPN, Dasgupta et al., returned 70.10, 71.13, 80.75, 78.23, 80.50, respectively.
Using ICDAR 2019 MLT, M-EAST, CRAFTS, Text-spotter (Huang et al. 2021) produced
F-Score of 83.08, 70.86, 72.66, respectively.

5.2 Research challenges

Text detection and recognition from natural scene photographs is a very challenging issue
due to a variety of structural/topological similarities- dissimilarities, length, size of text,
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(a) (b) (c) (d)

Fig. 17 Multi-script scene text images: a the title of a Tollywood movie poster is written in Roman and
Bangla; b the name of a restaurant written in Roman and Bangle at the character-level; ¢ a Bollywood
movie poster where the title is character-level multi-scripted in each word using Devanagari and Roman
script; d character-level bi-script name a restaurant in Bangla and Roman script

and other factors, etc., that make this domain more interesting for researchers. Here, we
discuss the challenges which need to be addressed.

®  Multi-oriented text: Apart from horizontally aligned, the text might be diagonal, bent,
circular, or even a mixture of disparate orientations to captivate the attention of onlook-
ers. This is a major challenge for researchers to design a single technique for all types
of oriented texts.

® Background graphics: It has been observed that the scene images are made color full
and attractive. To do this the background of the image (non-text area) is designed with
complicated graphics which make it difficult to extract the foreground text. Also, the
foreground-background similarity makes the extraction process more challenging.

e Issues in OCR development: Character segregation in scene text elements is a diffi-
cult challenge owing to the vast variety of typefaces, contacting, and separated letters.
As a result, despite numerous letter delineation techniques documented in the research,
successful scene text element extraction, letter separation, and consequent recognition
remain unsolved for making OCR engines.

e Cam related issues: The cameras may suffer from poor lighting circumstances, heat-
ing issues, a reflection, which makes the captured image noisy, low illuminated, etc.,
that complicates the scene text retrieval procedure. Also, the shaky cam often produces
blurriness in images.

e Dataset related issues: Despite the humongous amount of datasets currently offered,
contemporary handcrafted and deep learning-based strategies faces low-efficiency issue
since they necessitate a sizeable amount of data with accurate ground truth for text
detection and recognition.

® Recognition efficiency: To improve scene text recognition efficiency, attempts
should be made to divide letters into single letters using disassembly algorithms to
accelerate findings and assure satisfactory recognition accuracy.

e Efficient techniques: There is still a long way to go in terms of developing real-
world methods that can accurately and reliably retrieve substantial text data in
scene text. In the foreseeable future, increasingly stronger systems for text detec-
tion segmentation and recognition need to be developed to address complex data-
sets in actual circumstances.
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e Text length and size: Text detection systems frequently are unable to recognize
long sequences of texts, resulting in incomplete and erroneous identification. Fur-
thermore, text occurrences containing widely separated letters can become dispa-
rate, and thus affect letter identification. Text detection in large-scale photos, on
the other hand, suffers in tiny word occurrences. Furthermore, systems have been
shown to adapt incoming images to different dimensions during analysis, which
could significantly lower the appearance of tiny text occurrences, culminating in
erroneous recognition.

e  Multilingual text: Since multiple linguistics possess unique stroke structures (for
example, Chinese and English), many present approaches for multilingual recogni-
tion and detection are ineffective. For this researchers are doing script identifica-
tion first and then creating a customized framework to detect and recognize each
language independently which becomes a three-stage approach (extraction, identifi-
cation, recognition) and is inefficient.

® Resource constrained environment: With the rapid development of portable
devices, real-time analysis of visual information has become extremely relevant.
The main goal of this assignment is to enhance real effectiveness, precision, and
resilience by optimizing running speed and saving memory, and afterward estab-
lishing an upgraded resource-constrained platform like mobile or handheld devices.

e More complex multi-script scenarios: Today’s writing on banners and posters is
multi-scripted not only on the line and word level Fig. 17a, but also on the charac-
ter-level Fig. 17b—d to draw viewers attention which makes them very difficult to
recognize and analyze them.

6 Future scope

The prospective approaches in text detection and localization that were found through
the survey of numerous research publications are presented in this part. We have iden-
tified and assessed several issues from the previous studies that should be investigated
more in the future to advance this domain.

e Several techniques asserted that they are capable of identifying and detecting
curved, slanted, and perpendicular texts in scene images. But it has been observed
that there are lots of failure cases in proper bounding box creation for these types
of multi-oriented texts. Recently, transformer-based model (Selvam et al. 2022) has
proved its efficiency in handling these issues in scene text recognition.

e The image occlusion is a major issue in localizing the texts correctly which is still
lacking in the literature.

e The researchers put little concern about the situations of image capture where there
are similarities in the foreground with background textures. For example, images
like movie posters (Ghosh et al. 2021b) where there are analogous background tex-
tures with the text bodies are generally found. Also, artistic texts are involved in
this type of poster image where creative font style, disparate font size, etc., makes
hindrances in proper bounding box generation.

e The datasets need to be diverse considering uneven surfaces, dirty walls, moisture
background, and low illuminated places where blurriness, noise, and low illumina-
tion are the issues that need to be addressed to make this field more realistic.
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e Researchers considered both real and synthetic data in their experimentation. But,
still, the synthetic data has not been considered with realistic views by varying
conditions like occlusion, opacity, shadowing, dispersion, obstruction, background
clutter, complex background, motion blur, etc. The advantages of synthetic data,
like generalization capacity, have not yet been adequately investigated.

¢ In the case of text recognition, most of the work concentrated on English languages
and corresponding scripts. Since the single types of scripts are handled, a script
identification system wasn’t necessitated in their work. However, disparate lan-
guages and scripts need to be considered to make this domain used in real-world
applications. The multi-language environment is an urgent need in this domain.

e There are many geometrical similarities of letters in different scripts (e.g., Roman—
Tamil, Devanagari—-Gurumukhi, Devanagari—-Bangla, etc.). The upcoming text rec-
ognition systems need to be efficient to address this issue.

e There are more complex real-world multi-script at character-level scene text images
as presented in Fig. 17b—d that needs to be addressed.

e The major challenge faced by deep learning-based frameworks is the need for high-
end processing like GPUs which restrains them to be used in low-resource plat-
forms like mobile-based handheld devices.

e Demand for automatic scene text recognition-based system is growing in several
industrial applications like tourism, the financial sector, healthcare, manufacturing,
etc., as discussed in Table 1.

7 Conclusion

This study provides a detailed overview of handcrafted and deep learning-based techniques
for text analysis in natural images. We began reviewing the text detection methodologies
and then reported and analyzed the text categorization methods that served as the foun-
dation for the recognition and separation systems. Following a thorough analysis of the
research, it is understood how the approaches metamorphosed according to the needs/
challenges/complexities in natural text images chronologically. It was observed that the
efficiency of interpretation of very basic word/character images is quite good. But, as the
complexity of the text strings grows due to background components, color uniformity, ori-
entations, blurriness, noisiness, etc., the efficiency decreases. Furthermore, detection tech-
niques are frequently not resilient to manage the related difficulties owing to camera-based
distortions and integrated contextual deployments. In a summary, this article provides a
wide overview of published literature to date, and also connected accessible datasets in the
purview of novel ideas, standard categorization and/or recognition achievement, informa-
tive analysis, and discourse of expansive regions to investigate in sequence to accomplish
the preferred objective of scene text analysis.
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