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ABSTRACT

In this paper we propose a generic framework based on Hid-
den Markov Models (HMMs) for recognition of individuals from
their gait. The HMM framework is suitable, because the gait of an
individual can be visualized as his adopting postures from a set,
in a sequence which has an underlying structured probabilistic na-
ture. The postures that the individual adopts can be regarded as
the states of the HMM and are typical to that individual and pro-
vide a means of discrimination. The framework assumes that, dur-
ing gait, the individual transitions between N discrete postures or
states but it is not dependent on the particular feature vector used
to represent the gait information contained in the postures. The
framework, thus, provides flexibility in the selection of the feature
vector. The statistical nature of the HMM lends robustness to the
model. In this paper we use the binarized background-subtracted
image as the feature vector and use different distance metrics, such
as those based on the L1 and L2 norms of the vector difference,
and the normalized inner product of the vectors, to measure the
similarity between feature vectors. The results we obtain are bet-
ter than the baseline recognition rates reported before.

1. INTRODUCTION

Biometrics can be a powerful cue for reliable automated person
identification and there exist several established biometric-based
identification techniques including fingerprint and hand geometry
methods, speaker identification, face recognition and iris identifi-
cation. However, the applicability of all these methodologies is
usually restricted to controlled environments or require coopera-
tion of the subject. We, therefore, need to explore biometric signa-
tures which can be obtained non-invasively from a distance. Gait is
one such biometric which is currently being explored for purposes
such as identification. We know from experience that people often
recognize others by simply observing the way they walk imply-
ing that body shape and dynamics are sufficiently distinct across
humans.

It has been observed that gait can be modelled as a transition
across states, where each state is exemplified by a typical feature
vector or exemplar. In this paper we propose a general framework
that employs exemplar-based HMMs to characterize an individ-
ual’s gait and thereafter recognize the individual from his gait. The
use of temporal templates, which capture motion of each pixel in
the frame, has been proposed for recognition of both human ac-
tions [1] and humans from their gait [2]. HMMs have also been
used to recognize human actions [3, 4, 5]. Exemplars have been
used in learning probabilistic models in [6] and tracking in [7].
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Our objective is to recognize an individual from a video sequence
of the individual walking in a fronto-parallel pose. We represent
the structural aspect of the person by using typical feature vec-
tors corresponding to different “states”, and the dynamical aspect
of the individual’s gait by modelling the transition between these
“states” using the transition matrix like in [8]. We integrate these
two components for training models for representation and identi-
fication. Additionally, we propose a probability distribution for the
observations based on the exemplars. This affords us flexibility in
our choice of feature vectors and suitable distance metrics corre-
sponding to the feature vectors. We provide algorithms to train the
exemplars as a function of all the feature vectors unlike [8] which
selects just N frames as the exemplars and trains the Feature-to-
Exemplar distance vectors instead. This step makes our algorithm
much less susceptible to noise in the feature vectors. The ques-
tion of which feature vector to use is open and often depends on
the quality of the video and therefore it would be useful to have
a framework that does not depend on the particular feature vec-
tor used. In the experiments conducted we have used video se-
quences from the USF database and selected the binary image ob-
tained from the background subtraction algorithm provided in the
database as the feature vector [9]. We compare the performance of
our algorithm to the baseline algorithm proposed in [10].

2. OVERVIEW OF THE HMM FRAMEWORK

Let the database consists of video sequences of P persons. The
model for the pth person is given by λp = (Ap, Bp, πp) with N
number of states. The model, λp, is built from the observation
sequence for the pth person using the sequence of feature vectors
given by Op = {Op

1,O
p
2, . . . ,O

p
Tp

}, where Tp is the number of

frames in the sequence of the pth person. Ap is the transition ma-
trix, and πp is the initial distribution. The Bp parameter consists of
the probability distributions for a feature vector conditional on the
state index, i.e., the set {P p

1 (.), P p
2 (.), . . . , P p

N (.)}. The probabil-
ity distributions are defined in terms of exemplars, where the jth

exemplar is a typical realization of the jth state. The exemplars for
the pth person are given by Ep = {Ep

1,E
p
2, . . . ,E

p
N}. Henceforth,

the superscript denoting the index of the person is dropped for sim-
plicity. The motivation behind using an exemplar-based model is
that the recognition can be based on the distance measure between
the observed feature vector and the exemplars. The distance met-
ric is evidently a key factor in the performance of the algorithm.
Pj(Ot) is defined as a function of D(Ot,Ej), the distance of the
feature vector Ot from the jth exemplar.

Pj(Ot) = αe−αD(Ot,Ej) (1)



F1 F2 F3 F4 F5 F6 F7

Fig. 1. Part of an Observation Sequence

During the training phase, a model is built for all the subjects,
indexed by p = 1, 2, . . . , P , in the gallery. An initial estimate
of Ep and λp is formed from Op, and these estimates are refined
iteratively. Note that B is completely defined by E if α is fixed
beforehand. We can iteratively estimate A and π by using the
Baum-Welch algorithm and keeping E fixed. The algorithm to
re-estimate E is determined by the choice of the distance metric.
During testing, given a Gallery L = {λ1, λ2, . . . , λP } and the
probe sequence of length T , X = {X1,X2, . . . ,XT } traversing
the path Q = {q1, q2, . . . , qT }, qt being the state index at time t,
we obtain the ID of the probe sequence as

ID = argp max
Q,p

Pr[Q|X , λp]. (2)

3. METHODOLOGY

The feature vector we use in the experiments is the binarized ver-
sion of the background subtracted images. The images are scaled
and aligned to the centre of the frame as in Figure 1 which features
part of a sequence of feature vectors. We describe in this section
the methods used to obtain initial estimates the HMM parameters,
the training algorithm and finally and identification from a probe
sequence.

3.1. Initial Estimate of HMM Parameters

In order to obtain a good estimate of the exemplars and the transi-
tion matrix, we first obtain an initial estimate of an ordered set of
exemplars from the sequence and the transition matrix and succes-
sively refine the estimate. The initial estimate for the exemplars,
E0 = {E0

1,E
0
2, . . . ,E

0
N} is such that the only transitions allowed

are from the jth state to either the jth or the (j mod N + 1)th

state. A corresponding initial estimate of the transition matrix, A0

(with A0
j,j = A0

j,j mod N+1 = 0.5, and all other A0
j,k = 0) is also

obtained. The initial probabilites πj are set to be equal to 1/N .
We observe that the gait sequence is quasi-periodic and we

use this fact to obtain the initial estimate E0. We can divide the
sequence into “cycles”, where a cycle is defined as that segment of
the sequence bounded by silhouettes where the subject has arms
by his side and legs approximately aligned with each other. We
can further divide each cycle into N temporally adjacent clusters
of approximately equal size. We visualize the frames of the jth

cluster of all cycles to be generated from the jth state. Thus we
can get a good initial estimate of Ej from the feature vectors be-
longing to the jth cluster. For example, assume that the training
sequence is given by Y = {Y1,Y2, . . . ,YT }. We can partition
the sequence into K cycles, with the kth cycle given by frames in
the set Yk = {YSk

,YSk+1, . . . ,YSk+Lk−1}, where Sk and Lk

are the index of the first frame of the kth cycle, and the length of
the kth cycle respectively. We define the first cluster to comprise
of frames with indices Sk, Sk + 1, . . . , Sk + 1
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Fig. 2. Cycle boundaries estimated using an adaptive filter
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We need to robustly estimate the cycle boundaries so that we can
partition the sequence into N clusters and obtain the initial es-
timates of the exemplars. If the sums of the foreground pixels
of each image are plotted with respect to time, then, as per our
definition of a cycle, the minimas should correspond to the cy-
cle boundaries. We denote the sum of the foreground pixels of
the silhouette in the nth frame as s[n]. This signal is noisy and
may contain several spurious minima. However we can exploit
the quasi-periodicity of the signal and filter the signal to remove
the noise before identifying the minima. Methods such as median
filtering or differential smoothing of s[n] are not very robust as
they do not take into account the frequency of the gait. A more
robust method would be to analyse s[n] in the frequency or the
time-frequency domain, using band-pass filters or the Short Time
Fourier Transform (STFT).

The specifications of the band-pass filter are such as to allow
frequencies that are typical for a fast walk. The video is captured
at 30 frames per second, and the sampling frequency, fs = 1/30
and Ts = 30. The maximum gait frequency is assumed to be
fm = 0.1 corresponding to a cycle period of Tm = 10. A Ham-
ming window of length L is used. The extended sequence x[n]
is obtained by symmetrically extending s[n] in both directions by
L/2. Therefore the sequence x[n] has length M = N + L. The
resultant sequence is filtered using a bandpass filter (with upper
cut-off frequency fuc = fm), in both directions to remove phase
delay. The distances between the minimas of the filtered sequence
lead us to an estimate of the cycle period. The cycle frequency is
estimated as the inverse of the median of cycle periods. Using this
revised estimate of the frequency of the gait, f̂ , a new filter is con-
structed with upper cut off frequency fuc = f̂ + 0.02. For long
sequences, STFT techniques could be used instead of straightfor-
ward filtering in order to account for a slowly varying frequency
of gait. Figure 2 illustrates the performance of several algorithms
in identifying the cycle boundaries. A manual examination of all
the sequences in the Gallery revealed a 100% detection rate with
hardly any false detection of cycle bouldaries. We also observed
from the the initial exemplars obtained using the cycle registration



results from the filtering method that the frequency based filtering
method is more accurate and robust compared to the other meth-
ods.

3.2. Training the HMM Parameters

The iterative refining of the estimates is performed in two steps.
In the first step, a Viterbi evaluation [11] of the sequence is per-
formed using the current values for the exemplars and the tran-
sition matrix. Thus feature vectors are clustered according to the
most likely state they originated from. The exemplars for the states
are newly estimated from these clusters. Using the current values
of the exemplars, E(i) and the transition matrix, A(i), Viterbi de-
coding is performed on the sequence Y to obtain the most probable
path Q = {q(i)

1 , q
(i)
2 , . . . , q

(i)
T }, where q

(i)
t is the state at time t.

Thus the set of observation indices, whose corresponding observa-
tion is estimated to have been generated from state j is given by
T (i)

j = {t : q
(i)
t = j}. We now have a set of frames for each state

and we would like to select the exemplars so as to maximise the
probability in (3). If we use the definition in (1), (4) follows.

E
(i+1)
j = arg

E
max

∏
t∈T

(i)
j

P (Yt|E) (3)

E
(i+1)
j = arg

E
min

∑
t∈T

(i)
j

D(Yt,E) (4)

The actual method for minimising the distance in (4) however de-
pends on the distance metric used. We have experimented with
three different distance measures, namely the Euclidean (EUCLID)
distance, the inner product (IP) distance, and the sum of absolute
difference (SAD) distance which are given by (5), (6), and (7) re-
spectively. Note that though Yt and E are 2-dimensional images,
they are represented as vectors of dimension D × 1 for ease of
notation. 1D×1 is a vector of D ones.

DEUCLID(Y,E) = (Y − E)T (Y − E) (5)

DIP (Y,E) = 1 − Y
T
E√

YT YET E
(6)

DSAD(Y,E) = |Y − E|T 1D×1 (7)

The equations for updating the jth element of the exemplars in the
EUCLID distance, IP distance and the SAD distance cases are pre-
sented in (8), (9) and (10) respectively. Ỹ denotes the normalized
vector Y and |T (i)

j | denotes the cardinality of the set T (i)
j .

E
(i+1)
j (j) = 1

|T
(i)
j

|

∑
t∈T

(i)
j

Yt(j) (8)

E
(i+1)
j (j) =

∑
t∈T

(i)
j

Ỹt(j) (9)

E
(i+1)
j (j) = median

t∈T
(i)
j

{Yt(j)} (10)

The exemplars estimated for one observation sequence using the
three distance metrics in (5), (6), and (7) are displayed in Fig-
ure 3. Given E(i+1) and A(i), we can calculate A(i+1) using the
Baum-Welch algorithm [11]. Thus we can successively refine our
estimates of the HMM parameters. It usually takes only a few it-
erations in order to obtain an acceptable estimate.

3.3. Identifying from a Test Sequence

Identifying a sequence involves deciding which of the model pa-
rameters to use for discrimination parameters. Given the models

E1 E2 E3 E4 E5 E6

(a) Inner product distance

E1 E2 E3 E4 E5 E6

(b) Euclidean distance

E1 E2 E3 E4 E5 E6

(c) SAD distance

Fig. 3. Exemplars estimated using various distance measures

in the gallery, L = {λ1, λ2, . . . , λP } and the probe sequence,
X = {X1,X2, . . . ,XT }, we would like to find the model and
the path that maximises the probability of the path given the probe
sequence. The ID is obtained as in (2).

We do not need to use the trained parameter set, λ, as a whole.
For example, if we believe that the transition matrix is predomi-
nantly indicative of the speed at which the subject walks, and is
therefore not suitable as a discriminant of the ID of the subject,
then we have the option of using only part of the parameter set
given by γp = (Bp, πp) instead of using the HMM parameter
set in its entirety. In this case, the conditional probability of the
sequence, given the ID, is given as follows. The Baum-Welch Al-
gorithm could be used in order to obtain AX

p recursively in (12).

Pr[Q|X , γp] = Pr[Q|X , AX
p , γp] (11)

AX
p = argA max Pr[X|A, γp] (12)

4. EXPERIMENTAL RESULTS

The objective of our experiments was to evaluate the performance
of the algorithm and also compare the efficacy of the different dis-
tance measures in gauging the similarity between two images as
far as posture is concerned. The USF database contains video se-
quences of 75 individuals a subset of whom feature in sequences
collected under each of 8 different conditions. The sequences are
labelled Gallery, Probe A, Probe B, Probe C, Probe D, Probe E,
Probe F, and Probe G. There are slightly fewer numbers in the
experiments because some of the background subtracted images
were blank. We trained our parameters on the sequences from the
Gallery set. In each experiment, we tried to identify the sequences
in each of the seven Probe sets from the parameters obtained from
the Gallery set using the inner product distance measure. The ID
was calculated using (2). The experiments were repeated with dif-
ferent distance measures. The results of the experiment using the
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IP distance measure between feature vectors in the form of Cumu-
lative Match Scores (CMS) plots [10] are in Figure 4. Table 1 gives
a brief summary of the experiments conducted (G and C denote
grass and concrete surfaces, A and B denote different shoe types,
and R and L denote different camera views). We observe that the
distance measure that works best and is most simple to implement
is the inner product distance. The performance comparison with
the baseline [10] is illustrated in Figure 5.

5. CONCLUSION

In this paper, we have proposed a general HMM-based framework
to represent and recognize humans. The framework provides al-
gorithms to train the HMM paramters and to identify probe se-
quences. The framework has the potential to work with suitably
complex feature vectors and distance measures that are less sus-
ceptible to viewing angles or other factors, though we have used

Probe PI (at rank 1) PI (at rank 5)
IP Euclid SAD IP Euclid SAD

A (GAL) [66] 99% 99% 98% 100% 100% 100%
B (GBR) [37] 89% 89% 89% 92% 92% 92%
C (GBL) [37] 78% 78% 75% 92% 92% 92%
D (CAR) [62] 36% 29% 23% 62% 60% 59%
E (CBR) [39] 29% 28% 21% 54% 54% 59%
F (CAL) [62] 24% 19% 16% 47% 46% 44%
G (CBL) [38] 18% 14% 15% 48% 48% 45%

Table 1. Performance across distance metrics: The numbers in
square brackets denote the number of individuals in that set.

sequences with a constant viewing angle. The periodic nature of
gait was exploited in a linear filtering network to obtain good ini-
tial values for the exemplars. We have analysed different distance
metrics and find that the inner product distance works best. The
results obtained are significantly better than the baseline with the
additional advantage of compact representation as compared to the
baseline. In future work we will study the effect of the background
subtraction and other factors such as footwear in order to obtain a
more robust and compact feature vector.
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